Math, asked by adityashukla2007, 3 months ago

If the sum ofn, 2n, 3n terms of an arithmetic progression are s,, S, S, respectively
then prove that s3 = 3 (s,-s,).​

Answers

Answered by VishnuPriya2801
25

Correct Question :-

The sum of n , 2n , 3n terms of an AP are

S₁ , S₂ S₃ respectively , then prove that

S₃= 3(S₂ - S₁).

Answer:-

Given:

Sum of first n terms of an AP = S₁

Sum of first 2n terms = S₂

Sum of first 3n terms = S₃

We know that,

Sum of first n terms (Sₙ) = n/2 [ 2a + (n - 1)d ]

So,

★ S₁ = n/2 [ 2a + (n - 1)d ] -- (1)

★ S₂ = 2n/2 [ 2a + (2n - 1)d ] -- (2)

★ S₃ = 3n/2 [ 2a + (3n - 1)d ] -- (3)

Now,

We have to prove that:

S₃= 3 (S₂ - S₁)

Putting the values from equations (1) , (2) , (3) we get,

 \implies \sf \:  \frac{3n}{2} [2a + (3n - 1)d] = 3 \bigg( \frac{2n}{2} [2a + (2n - 1)d] -   \bigg\{ \frac{n}{2} [2a + (n - 1)d ] \bigg\} \bigg) \\  \ \\ \ \implies \sf \:  \frac{3n}{2}(2a + 3nd - d) = 3 \bigg( n(2a + 2nd - d) -  \bigg \{ \frac{n}{2} (2a + nd - d) \bigg \} \bigg) \\  \\  \\ \implies \sf \: \frac{6an + 9 {n}^{2}d - 3nd }{2}  = 3 \bigg( \frac{2 \times n(2a + 2nd - d) - n(2a + nd - d)}{2}  \bigg) \\  \\ \\  \implies \sf \:\: \frac{6an + 9 {n}^{2} d - 3nd}{2}  = 3 \bigg( \frac{4an +4{n}^{2}d -2 nd - 2an -  {n}^{2} d  + nd  }{2}  \bigg) \\   \\  \\ \implies \sf \:\: \frac{6an + 9 {n}^{2} d - 3nd}{2}  = 3 \bigg( \frac{2an +3 {n}^{2} d - nd }{2}  \bigg) \\ \\ \\ \implies \sf \:\: \frac{6an + 9 {n}^{2} d - 3nd}{2} =  \frac{6an + 9 {n}^{2} d - 3nd}{2}

Hence Proved.

Answered by Anonymous
6

\large{\bf{\underline{Corrrect \: Question:-}}}

If the sum of n, 2n and 3n terms of an A.P. are \sf S_1 , S_2 , S_3 respectively. Then, prove that \sf S_3 = 3(S_2 - S_1)

\large{\bf{\underline{AnSwer:-}}}

 \rule{278}{2}

\large{\bf{\underline{ \green{Given:-}}}}

❐ Sum of n, 2n and 3n terms are \sf S_1 , S_2 , S_3 respectively.

\large{\bf{\underline{ \green{To \: Prove:-}}}}

\sf S_3 = 3(S_2 - S_1)

\large{\bf{\underline{ \green{Solution:-}}}}

Here, Let (a) be the first term and (d) be the common difference of the given A.P.

Now, using

 \large{ \red{\underline{ \pink{\boxed{\sf S_n = \dfrac{n}{2} \bigg\lgroup {2a + (n-1)d} \bigg\rgroup}}}}}

Now,

Sum of n terms = \sf S_1

 \:  \:  \: \sf S_1 = \dfrac{n}{2} \bigg\lgroup {2a + (n-1)d} \bigg\rgroup \:  \: ........ \mathcal{(i)}

Sum of 2n terms = \sf S_2

 \:  \:  \: \sf S_2 = \dfrac{2n}{2} \bigg\lgroup {2a + (2n-1)d} \bigg\rgroup \:  \: ........ \mathcal{(ii)}

Sum of 3n terms = \sf S_3

 \:  \:  \: \sf S_3 = \dfrac{3n}{2} \bigg\lgroup {2a + (3n-1)d} \bigg\rgroup \:  \: ........ \mathcal{(iii)}

 \sf  \red{\bigstar} \underline{Subtract  \: eq.(i) \: from \: eq.(ii)}  \blue{\bigstar}

 \sf\implies S_2 - S_1 = \dfrac{2n}{2} \bigg\lgroup {2a + (2n-1)d} \bigg\rgroup - \dfrac{n}{2} \bigg\lgroup {2a + (n-1)d} \bigg\rgroup \\  \\

 \sf\implies S_2 - S_1 = \dfrac{n}{2} \bigg\lgroup {2 \bigg(2a + (2n-1)d} \bigg) -  \bigg(2a + (n - 1)d \bigg) \bigg\rgroup  \\  \\

 \sf\implies S_2 - S_1 = \dfrac{n}{2} \bigg\lgroup {2a + (3n - 1)d } \bigg\rgroup  \\  \\

 \sf\implies 3(S_2 - S_1)= \dfrac{3n}{2} \bigg\lgroup {2a + (3n - 1)d } \bigg\rgroup  =  S_3 \\  \\

 \sf\therefore S_3 = 3(S_2 - S_1)

Hence, \sf S_3 = 3(S_2 - S_1)

\bold{ \pink{Hence \: Proved}}

Similar questions