Math, asked by adiraut2004, 5 months ago

if the sum pf the zeros of the quadratic polynomial 3x^2-kx +6 is 3 . then find the value of k​

Answers

Answered by brainlyofficial11
23

☯︎ Aɴsʀ

we have a quadratic polynomial,

  • 3x² - Kx + 6 = 0
  • sum of zeroes = 3

firstly compare the polynomial with, ax² + bx + c = 0

here, 3x² - Kx + 6 = 0

  • a = 3
  • b = -k
  • c = 6

we know that,

 \boxed{ \boxed{  \bold{sum \: of \: zeroes =  \frac{ - coefficient \: of \: x}{coefficient \: of \:  {x}^{2} } }}}

here,

  • coefficient of x² = 3
  • coefficient of x = -k
  • constant term = 6
  • and sum of zeroes = 3

then,

 \bold{ : \implies 3 =  \frac{ - ( - k)}{3} } \\  \\  \bold{  : \implies \: 3 \times 3 = k} \:  \:  \\  \\  \bold{ :  \implies 9 = k} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \bold{ : \implies \boxed{ \bold{k = 9}} } \:  \:  \:  \:  \:  \:  \:  \:

hence, value of k is 9

__________________________

for more informative

 \boxed{ \boxed{  \bold{product \: of \: zeroes  =  \frac{ constant \: term}{coefficient \: of \:  {x}^{2} } }}}

Answered by XxMissCutiepiexX
5

Aɴsᴡᴇʀ⤵

we have a quadratic polynomial,

3x² - Kx + 6 = 0

sum of zeroes = 3

  • firstly compare the polynomial with, ax² + bx + c = 0
  • here, 3x² - Kx + 6 = 0
  • a = 3
  • b = -k
  • c = 6

we know that,

 \boxed{ \boxed{  \bold{sum \: of \: zeroes =  \frac{ - coefficient \: of \: x}{coefficient \: of \:  {x}^{2} } }}}

here,

  • coefficient of x² = 3
  • coefficient of x = -k
  • constant term = 6
  • and sum of zeroes = 3

then,

 \bold{ : \implies 3 =  \frac{ - ( - k)}{3} } \\  \\  \bold{  : \implies \: 3 \times 3 = k} \:  \:  \\  \\  \bold{ :  \implies 9 = k} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \bold{ : \implies \boxed{ \bold{k = 9}} } \:  \:  \:  \:  \:  \:  \:  \:

hence, value of k is 9

__________________________

★ for more informative

 \boxed{ \boxed{  \bold{product \: of \: zeroes  =  \frac{ constant \: term}{coefficient \: of \:  {x}^{2} } }}}

Similar questions