Math, asked by sonuprasad, 1 year ago

If the sun's angle of elevation in 30° and the height of the pole is 8m,then find the lenght of the shadow

Answers

Answered by raahul072
5
hey dude ....
ur answer is here.........!!!!!!!!
Attachments:
Answered by Anonymous
92

Answer:

⋆ DIAGRAM :

\setlength{\unitlength}{1.3 pt}\begin{picture}(100,100)(0,0)\put(0,10){\line(1,0){95}}\put(40,10){\line(0,1){55}}\put(95,10){\line(-1,1){85}}\multiput(0,65)(6,0){7}{\line(1,0){3}}\qbezier(88,16.856)(80.234,17.345)(81,10)\put(10,95){\circle*{20}}\put(25,35){$\sf{8\:m}$}\put(22,45){$\bf{Pole}$}\put(70,15){$\sf{30^{\circ}}$}\put(10,105){$\bf Sun$}\put(40,3){$\sf B$}\put(40,68){$\sf A$}\put(95,3){$\sf C$}\end{picture}

\rule{120}{1}

Let the AB be the Pole & ACB be the Sun's angle of elevation i.e. 30°

\underline{\bigstar\:\:\textsf{According to the Question :}}

\dashrightarrow\tt\:\:\tan(\theta)=\dfrac{Perpendicular}{Base}\\\\\\\dashrightarrow\tt\:\:\tan(30^{\circ})=\dfrac{AB}{BC}\\\\\\\dashrightarrow\tt\:\:\dfrac{1}{\sqrt{3}} = \dfrac{8\:m}{BC}\\\\\\\dashrightarrow\tt\:\:BC = 8\:m \times \sqrt{3}\\\\\\\dashrightarrow\:\:\underline{\boxed{\tt BC = 8\sqrt{3}\:m}}

\therefore\:\underline{\textsf{Hence, Length of Shadow will be \textbf{8$\sqrt{\text3}$ m}}}.

\rule{190}{2}

\bigstar\:\sf Trigonometric\:Values :\\\boxed{\begin{tabular}{c|c|c|c|c|c}Radians/Angle & 0 & 30 & 45 & 60 & 90\\\cline{1-6}Sin \theta & 0 & $\dfrac{1}{2} &$\dfrac{1}{\sqrt{2}} & $\dfrac{\sqrt{3}}{2} & 1\\\cline{1-6}Cos \theta & 1 & $\dfrac{\sqrt{3}}{2}&$\dfrac{1}{\sqrt{2}}&$\dfrac{1}{2}&0\\\cline{1-6}Tan \theta&0&$\dfrac{1}{\sqrt{3}}&1&\sqrt{3}&Not D$\hat{e}$fined\end{tabular}}

Similar questions