Math, asked by himanshutanwar901, 5 months ago

If the surface area of a sphere is 616 cm
find its diameter.​

Answers

Answered by Anonymous
2

GiveN:-

Surface area of sphere is 616 cm².

To FinD:-

Its diameter.

SolutioN:-

We know that,

\large{\green{\underline{\boxed{\bf{Surface\:Area=4\pi\:r^2}}}}}

where,

  • Surface Area = 616 cm²
  • π = 22/7
  • r is radius = ?

Putting the values,

\large\implies{\sf{616=4\times\dfrac{22}{7}\times\:r^2}}

\large\implies{\sf{616=\dfrac{88}{7}\times\:r^2}}

\large\implies{\sf{\dfrac{616\times7}{88}=r^2}}

\large\implies{\sf{\dfrac{4312}{88}=r^2}}

\large\implies{\sf{\dfrac{\cancel{4312}}{\cancel{88}}=r^2}}

\large\implies{\sf{49=r^2}}

Square rooting both the sides,

\large\implies{\sf{\sqrt{49}=r}}

\large\implies{\sf{7=r}}

\large\therefore\boxed{\bf{Radius=7\:cm.}}

Now the diameter:-

\large{\green{\underline{\boxed{\bf{Diameter=2\times\:radius}}}}}

where,

  • Radius = 7 cm.

Putting the values,

\large\implies{\sf{Diameter=2\times7}}

\large\therefore\boxed{\bf{Diameter=14\:cm.}}

The diameter of the sphere is 14 cm.

Similar questions