Math, asked by sherlysaji, 4 months ago

if the surface area of asphere is 144πm^2then its volums is​

Answers

Answered by Braɪnlyємρєяσя
0

Step-by-step explanation:

Surface area of sphere =4πr

2

⇒4πr

2

=144π

⇒r=

4

144

=

(

2

12

)

2

=6m

⇒ Volume =

3

4

πr

3

=

3

4

×π×6

3

=288πm

3

.

Hence, the answer is (288π)m

3

.

Answered by Anonymous
1

Surface area of sphere =

 \sf \:  {144\pi m}^{2}

  • First Find radius...

 \sf \: 144\pi =  {4\pi r}^{2}  \\  \sf144 \cancel{\pi} = 4 \cancel{\pi} {r}^{2}  \\  \sf \: 144 = 4 {r}^{2}  \\  \sf {r}^{2}  =  \frac{144}{4}  \\  \sf {r}^{2}  =  \frac{ \cancel{144}}{ \cancel{4}} =  \frac{36}{1}  = 36 \\  \sf \:r =  \sqrt{36}  \\  \sf \: r = 6

Now...

 \sf \huge \pink{volume \: of \: sphere \:  =  \frac{4}{3} \pi  {r}^{3} }

 \sf \:  =  \frac{4}{3} \pi  {r}^{3}  \\  \sf =  \frac{4}{3}  \times  \frac{22}{7}  \times 6 \times 6 \times 6 \\  \sf =  \frac{4}{ \cancel{ {3}}^{1} }  \times  \frac{22}{7}  \times  \cancel{  {6}}^{2}   \times 6 \times 6 \\  \sf =  \frac{88}{7}  \times 72 \\  \sf =  \frac{6336}{7}  =  {905.14m}^{3} (approx)

Similar questions