Math, asked by momigogoi, 1 year ago

If the tangent to the curve y=xcube+ax+b at p(1,-6) is parallel to the line y-x=0, find the value of a and b

Answers

Answered by goyoolka
13

Hey!

Your answer is in the following attachement.

Attachments:

momigogoi: thanks
Answered by SushmitaAhluwalia
3

The values of a and b are -2 and - 5 respectively

  • Given curve is

             y=x^{3}+ax+b          ----------------------(1)

         Differentiating on both sides w.r.t 'x'

             \frac{dy}{dx}=3x^{2} +a

  • The slope of tangent to (1) at P(1, -6) is given by

              m=\frac{dy}{dx} |_{(1, -6)}

              m=3(1)^{2} +a

              m=3+a                   -----------------------(2)

  • Given that tangent is parallel to the line

                y - x = 0

                y = x

                m = 1

  • Substituting m in (2), we get

                 1 = 3 + a

                 a = 1 - 3

                 a = -2

  • (1) passes through (1, -6) and a = -2, substituting these values in (1)

                 -6 = (1)^{3}+(-2)(1)+b

                 -6 = 1 - 2 + b

                   b = - 6 - 1 + 2

                  b = - 5

       ∴ The value of a is - 2 and b is - 5

             

Similar questions