Math, asked by SHRIHARSHAJOSHI, 1 year ago

If the third term of a G.P. is 2, then the product of first five terms is

Answers

Answered by Shubhendu8898
9

Let the first term of G.P. be a and common ratio be r, Then,

 T_1 = a  \\ \\  T_2 = ar    \\ \\ T_3 = ar^{2} \\ \\  T_4 = ar^{3} \\ \\ T_5 = ar^{4} \\ \\ Given, \\ \\ <br />T_2 = ar^{2} = 2  \\ \\ \text{Product  of  terms} = T_1 * T_2 * T_3 *T_4 * T_5 \\ \\ = a *   ar*ar^{2}*ar^{3}*ar^{4} \\ \\ = a^{5} r^{10} \\ \\ = (ar^{2} )^{5}  \\ \\ = 2^{5}  \\ \\  = 32 \ \ \textbf{Ans.}


Answered by amansharma264
3

answer = 32

Step-by-step explanation:

given \\ third \:  \: term \:  \: of \:  \: gp \:  = ar {}^{2}  = 2  \\ product \:  \: of \:  \: first \:  \: five \:  \: terms \\ t1 = a \\ t2 = ar \\ t3 = ar {}^{2} \\ t4 = ar {}^{3} \\ t5 = ar {}^{4} \\ a \times ar \times ar {}^{2} \times ar {}^{3} \times ar {}^{4} \\ a {}^{5}r {}^{10} =(ar {}^{2}) {}^{5}  \\ (2 ) {}^{5} = 32

Similar questions