Math, asked by anilsarkar, 6 months ago

If the three points (a,0), (0, b) and (1,1) are collinear then let us show that
1 by a plus 1 by b is equal to 1​

Answers

Answered by EnchantedGirl
11

\bigstar \underline{\underline{\mathbb{GIVEN:-}}}\\\\

  • Three points (a,0);(0,b);&(1,1) are collinear.

\\

\bigstar \underline{\underline{\mathbb{TO\ PROVE:-}}}\\\\

  • \sf \frac{1}{a} +\frac{1}{b} =1

\\

\bigstar \underline{\underline{\mathbb{PROOF:-}}}\\\\

We need to know:

❥︎\\ \boxed{\sf \orange{Area\ of\ triangle=\frac{1}{2} \left|\begin{array}{ccc}\sf x_1&\sf y_1&1\\\sf x_2&\sf y_2&1\\\sf x_3&\sf y_3&1\end{array}\right| }}\\\\

As the points are collinear , area of triangle should be equal to zero.

\\

Acc to question:

\mapsto \sf x_1=a,x_2=0,x_3=1\\\\\mapsto \sf y_1=0,y_2=b,y_3=1\\\\

Substituiting the values in the formula ,

:\implies \sf Area =\frac{1}{2} \left|\begin{array}{ccc}a&0&1\\0&b&1\\1&1&1\end{array}\right|=0\\\\

:\implies \sf \frac{1}{2} [a(b-1)+0(1-0)+1(0-b)]=0\\\\:\implies \sf \frac{1}{2}(ab-a+0-b)=0 \\\\:\implies \sf ab-a-b=0\\\\:\implies ab-(b+a)=0\\\\:\implies b+a=ab\\\\

Dividing both sides by 'ab' we get :

\\

:\implies \sf \frac{a}{ab} +\frac{b}{ab} =\frac{ab}{ab} \\\\:\implies \sf \orange{ \boxed{\boxed{\sf \frac{1}{a} +\frac{1}{b} =1 }}}\\\\

Hence proved !

-----------------------------------

Know More :-

\\\\\sf If\  A(x_1,y_1);B(x_2,y_2)&C(\sf x_3,y_3) \ are\ three\ points,\\\\

For the points to be collinear:

\\

❥ They should lie on same straight line.

Slope of line AB = Slope of AC

\sf i.e.,\ \frac{y_1-y_2}{x_1-x_2} =\frac{y_1-y_3}{x_1-x_3} \\

❥ Sum of lengths of any two line segments should be equal to length of remaining line segment .

i.e., AB +BC=AC

      AB+AC=BC

       AC+BC=AB

\\

❥ And to find length of line segment,we use the distance formula.

--------------------------------

HOPE IT HELPS !

Answered by Anonymous
7

Answer:

\huge\rm{Question}

\rm \: If  \: the  \: points \:  (a,0) \: (0,b)  \: and \:  (1,1) \:  are  \: collinear,  \: then  \: show \:  that  \:  \frac{1}{a}  +  \frac{1}{b}[\tex][tex]\rm \:  x_{1} (y_{2}- y_{3})+ x_{2}( y_{3}- y_{1})+ x_{3}( y_{1}- y_{2})=0\rm \:  x_{1}, y_{1}→(a,0) \\ \rm \:  x_{2} y_{2}=0,b \\ \rm \:  x_3y_3=(1,1)\rm \: →a(b-1)+0+1(0-b)=0 \\ \rm \: →ab-a-b=0 \\ \rm \: →ab=a+b \\ \rm \: →1= \frac{a+b}{ab}  \\ \rm \: → \frac{a}{ab}  +  \frac{b}{ab}  = 1 \\  \\ \rm→ \frac{1}{a}  +   \frac{1}{b} =1 \: (proved)

Similar questions