Math, asked by lukebambala, 22 hours ago

If the total cost function for a commodity is given by C = 0.25x2 + 4x + 100 dollars, where x represents the number of units produced, producing how many units will result in a minimum average cost per unit? Find the minimum average cost

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given Cost Function for a commodity is

\rm :\longmapsto\:C = 0.25 {x}^{2} + 4x + 100

So, Average Cost of the commodity is given by

\rm :\longmapsto\:AC = \dfrac{C}{x}

\rm :\longmapsto\:AC = \dfrac{0.25 {x}^{2} + 4x + 100 }{x}

\rm :\longmapsto\:AC = 0.25x + 4 + \dfrac{100}{x}

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}AC =\dfrac{d}{dx} \bigg(0.25x + 4 + \dfrac{100}{x}\bigg)

\rm :\longmapsto\:\dfrac{d}{dx}AC =0.25\dfrac{d}{dx}x + \dfrac{d}{dx}4 + 100\dfrac{d}{dx} {x}^{ - 1}

We know,

\purple{\rm :\longmapsto\:\boxed{\tt{ \dfrac{d}{dx}k = 0}}} \\

and

\purple{\rm :\longmapsto\:\boxed{\tt{ \dfrac{d}{dx} {x}^{n}  =  {nx}^{n - 1} }}} \\

So, using this, we get

\rm :\longmapsto\:\dfrac{d}{dx}AC =0.25 + 0 + 100( - 1) {x}^{ - 1 - 1}

\rm :\longmapsto\:\dfrac{d}{dx}AC =0.25  - 100 {x}^{ - 2}

For maxima or minima,

\rm :\longmapsto\:\dfrac{d}{dx}AC =0

\rm :\longmapsto\:0.25 - 100 {x}^{ - 2} = 0

\rm :\longmapsto\:\dfrac{25}{100} = \dfrac{100}{ {x}^{2} }

\rm :\longmapsto\:\dfrac{1}{4} = \dfrac{100}{ {x}^{2} }

\rm :\longmapsto\: {x}^{2} = 400

\bf\implies \:x = 20 \: units

As we have,

\rm :\longmapsto\:\dfrac{d}{dx}AC =0.25  - 100 {x}^{ - 2}

So, on differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{ {d}^{2} }{d {x}^{2} }AC =\dfrac{d}{dx}(0.25  - 100 {x}^{ - 2} )

\rm :\longmapsto\:\dfrac{ {d}^{2} }{d {x}^{2} }AC =\dfrac{d}{dx}0.25  - \dfrac{d}{dx}100 {x}^{ - 2}

\rm :\longmapsto\:\dfrac{ {d}^{2} }{d {x}^{2} }AC =0  - 100\dfrac{d}{dx}{x}^{ - 2}

\rm :\longmapsto\:\dfrac{ {d}^{2} }{d {x}^{2} }AC =- 100( - 2) {x}^{ - 2 - 1}

\rm :\longmapsto\:\dfrac{ {d}^{2} }{d {x}^{2} }AC =200 {x}^{ -3}  > 0

\bf\implies \:AC \: is \: minimum \: at \: x = 20

And Minimum Average Cost is

\rm :\longmapsto\:AC _{{x = 20}}  = 0.25 \times 20 + 4 + \dfrac{100}{20}

\rm :\longmapsto\:AC _{{x = 20}}  = 5 + 4 + 5

\rm :\longmapsto\:AC _{{x = 20}}  = 14

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Basic Concept Used :-

Let y = f(x) be a given function.

To find the maximum and minimum value, the following steps are follow :

1. Differentiate the given function.

2. For maxima or minima, put f'(x) = 0 and find critical points.

3. Then find the second derivative, i.e. f''(x).

4. Apply the critical points ( evaluated in second step ) in the second derivative.

5. Condition :-

  • The function f (x) is maximum when f''(x) < 0.

  • The function f (x) is minimum when f''(x) > 0.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

LEARN MORE

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) &amp; \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} &amp; \frac{\qquad \qquad}{} \\ \sf k &amp; \sf 0 \\ \\ \sf sinx &amp; \sf cosx \\ \\ \sf cosx &amp; \sf  -  \: sinx \\ \\ \sf tanx &amp; \sf  {sec}^{2}x \\ \\ \sf cotx &amp; \sf  -  {cosec}^{2}x \\ \\ \sf secx &amp; \sf secx \: tanx\\ \\ \sf cosecx &amp; \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  &amp; \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx &amp; \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  &amp; \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions