if the total surface area of a hemisphere is 462cm
Answers
Answer:
Its volume is 718.67 cm^3
Step-by-step explanation:
Formula of total surface area of hemisphere : 3 \pi r^2
So, total surface area of hemisphere = 3 \times \frac{22}{7} \times r^2
We are given that the total surface area of a solid hemisphere is 462 sq cm.
So, 3 \times \frac{22}{7} \times r^2=462
r^2=462 \times \frac{7}{22 \times 3}
r=\sqrt{462 \times \frac{7}{22 \times 3}}
r=7
So, Radius of hemisphere is 7 cm.
Volume of hemisphere = \frac{2}{3} \pi r^3
= \frac{2}{3} \times \frac{22}{7} \times (7)^3
= 718.67 cm^3
Hence its volume is 718.67 cm^3
Answer:
Solution:-
Total surface area of hemisphere = 462 sq cm
Total surface area of hemisphere = 3πr²
⇒ 3πr² = 462
⇒ 3*22/7*r² = 462
⇒ 66r² = 462*7
⇒ r² = 3234/66
⇒ r² = 49
⇒ r = 7 cm
Now, the volume of hemisphere = 2/3πr³
= 2/3*22/7*7*7*7
Volume of hemisphere = 718.67 cu cm
follow on Instagram
I'd on profile