Math, asked by zainabalii, 1 year ago

If the total surface area of a solid hemisphere is 462cm^ then find its volume [pi=22/7]

Answers

Answered by Striker10
2

Answer:

Mark it as brainliest

Yes

Attachments:
Answered by silentlover45
4

\large\underline\pink{Given:-}

  • Total surface area of the hemisphere is 462 cm²

\large\underline\pink{To find:-}

  • Fine it's volume ....?

\large\underline\pink{Solutions:-}

\: \: \: \: \: \: \: \therefore \: \: Total \: \: surface \: \: of \: \: hemisphere \: \: = \: \:  {3} \: \pi \: {r}^{2} .

\: \: \: \: \: \: \: \leadsto \: \: {3} \: \pi \: {r}^{2} \: \: = \: \: {462}

\: \: \: \: \: \: \: \leadsto \: \: {3} \: \times \: \frac{22}{7} \: \times \: {r}^{2} \: \: = \: \: {462}

\: \: \: \: \: \: \: \leadsto \: \: {r}^{2} \: \: = \: \: \frac{{462} \: \times \: {7}}{{22} \: \times \: {3}}

\: \: \: \: \: \: \: \leadsto \: \: {r}^{2} \: \: = \: \: \frac{{21} \: \times \: {7}}{3}

\: \: \: \: \: \: \: \leadsto \: \: {r}^{2} \: \: = \: \: {7} \: \times \: {7}

\: \: \: \: \: \: \: \leadsto \: \: {r}^{2} \: \: = \: \: {49}

\: \: \: \: \: \: \: \leadsto \: \: {r} \: \: = \: \: \sqrt{49}

\: \: \: \: \: \: \: \leadsto \: \: {r} \: \: = \: \: {7}

The radius of hemisphere is 7 cm.

\: \: \: \: \: \: \: \therefore \: \:  Volume \: \: of \: \: hemisphere \: \: = \: \:  \frac{2}{3} \: \pi \: {r}^{3} .

\: \: \: \: \: \: \: \leadsto \: \: \frac{2}{3} \: \times \: \frac{22}{7} \: \times \: {(7)}^{3}

\: \: \: \: \: \: \: \leadsto \: \: \frac{2}{3} \: \times \: {22} \: \times \: {(7)}^{2}

\: \: \: \: \: \: \: \leadsto \: \:  \frac{44}{3} \: \times \: {49}

\: \: \: \: \: \: \: \leadsto \: \:  \frac{2156}{3}

\: \: \: \: \: \: \: \leadsto \: \:  {718.6} \: {cm}^{3}

\: \: \: \: \: \: \: Hence, \\ \: \: \: \: Volume \: \: of \: \: hemisphere \: \: is  \: \: {718.6} \: {cm}^{3}.

\large\underline\pink{More \: Important:-}

  • \: \: \: \: \: \: \: \: \: Total \: \: surface \: \: of \: \: hemisphere \: \: = \: \:  {3} \: \pi \: {r}^{2} .
  • \: \: \: \: \: \: \: \: \: Curved \: \: surface \: \: of \: \: hemisphere \: \: = \: \:  \frac{1}{2} \: \pi \: {r}^{2} .
  • \: \: \: \: \: \: \: \: \:  Volume \: \: of \: \: hemisphere \: \: = \: \:  \frac{2}{3} \: \pi \: {r}^{3} .

__________________________________

Similar questions