Math, asked by officershanmuga, 2 months ago

if the total surface area of a solid right cylinder is 880 sq.cm and it's radius is 10cm,find it's curved surface area.(take pi= 22 / 7​

Answers

Answered by Anonymous
1

Step-by-step explanation:

here is your answer of your question hope it will help you

Attachments:
Answered by Yugant1913
155

 \bigstar\large\underbrace\purple{\frak{Given}}

  • Total surface area of a solid right cylinder is 880cm²
  • Radius of cylinder 10cm

 \bigstar\large\underbrace\purple{\frak{To  \: Find }}

  • Curved surface area of solid right cylinder
  • Height of solid right cylinder

 \bigstar\large\underbrace\purple{\frak{formulas }}

 \sf \: Curved \:  surface  \: area _{(cylinder)} = 2\pi r(h + r)

 \bigstar\large\underbrace\purple{\frak{solution }}

Given that the total surface area of a solid right cylinder is 880cm and it's radius 10cm, let height of the cylinder be h

Now,

\sf\longmapsto Total \:  surface \:  area_{(solid \:  right \:  cylinder)}  = 2\pi r(h + r)

Putting values in formals

\sf\longmapsto Total \:  surface \:  area_{(solid \:  right \:  cylinder)}  = 2\pi r(h + r) \\  \\\sf\longmapsto 880= 2 \times  \frac{22}{7}  \times 10(h + 10) \\   \\ \sf\longmapsto \: h \:  + 10 =  \frac{88 \cancel0 \times 7}{2 \times 22 \times 1 \cancel0} \\ \\  \sf\longmapsto \: h + 10 =  \frac{ \cancel{88} \times 7}{2 \times  \cancel{22}}  \\ \\ \sf\longmapsto \: h + 10 =  \frac{4 \times 7}{2}  \\ \\ \sf\longmapsto \: h + 10 =  \cancel \frac{28}{2}  \\ \\ \sf\longmapsto \: h + 10 = 14 \\ \\ \sf\longmapsto \: h = 14 - 10 \\ \\ \sf\longmapsto \: h \:  = 4

Hence, height of the cylinder be 4cm

________________________

Now,

We find curved surface area of a solid right cylinder

We know that,

 \sf \: Curved \:  surface  \: area_ {(solid \:  right  \: cylinder) } = 2\pi rh

Putting values in formals

 \longmapsto\sf \: Curved \:  surface  \: area_ {(solid \:  right  \: cylinder) } = 2\pi rh \\  \\  \longmapsto\sf \: Curved \:  surface  \: area_ {(solid \:  right  \: cylinder) }  = 2 \times  \frac{22}{7}  \times 10 \times 4 \\  \\  \longmapsto\sf \: Curved \:  surface  \: area_ {(solid \:  right  \: cylinder) }  =  \frac{44 \times 10 \times 4}{7}  \\  \\  \longmapsto\sf \: Curved \:  surface  \: area_ {(solid \:  right  \: cylinder) }  =  \frac{440 \times 4}{7}  \\  \\  \longmapsto\sf \: Curved \:  surface  \: area_ {(solid \:  right  \: cylinder) }  =  \frac{1760}{7}  \\  \\ \red{ \longmapsto\sf \: Curved \:  surface  \: area_ {(solid \:  right  \: cylinder)} = 251 \frac{3}{7}   {cm}^{2}   }

Hence, the curved surface area of a solid right cylinder is  \sf \: 251 {cm}^{2}

Attachments:
Similar questions