If the two circles x2 + y2 + 2gx + 2fy = 0 and x² + y2 + 2g'x + 2f'y = 0 touch each other then
show that f'g = fg'.
Answers
Answered by
16
Refer The Attachment ⬆️
C1 = (–g, –f)
C2 = (–g–1, f–1)
r1 = √(g2 + f2)
r2 = √(g'2 + r'2)
C1 C2 = r1 + r2
(C1 C2)2 = (r1 + r2)2
(g' – g)2 + (f' – f)2 = g2 + f2 + g'2 + f'2 + 2√(g2 + f2) √(g2 + r2)
–2(gg' + ff') = 2{g2 g'2 + f2 f'2 + g2 f'2 + f2 g'2 }1/2
Squaring again
(gg' + ff')2 = g2 g'2 + f2 f'2 + g2 f'2 + g'2 f2
g2 g'2 + f2 f'2 + 2gg'ff' = g2 g'2 + f2 f'2 + g2 f'2 + g'2 f'2
2gg'ff' = g2 f'2 + f2 g'2
⇒ g2 f'2 + g'2 f2 – 2gg'ff' = 0
(or) (gf' – fg')2 = 0
(or) gf' = fg'
Hence, Proved f'g = fg'✔️
_______________________
Hope It Helps You ✌️
Attachments:
Similar questions