Math, asked by banerjeebulbul33, 11 months ago

If the two differential values of theta are theta1 and theta2where (0

Answers

Answered by HagoKing
0

Solution :

tanθ=λ

tanθ=λ

tan2A=

2tanA

1−

tan

2

A

tan2A=2tanA1-tan2A

2tan(

θ

2

)

1−

tan

2

(

θ

2

)

2tan(θ2)1-tan2(θ2)=λ

λ

tan

2

(

θ

2

)+2tan(

θ

2

)−λ=0

λtan2(θ2)+2tan(θ2)-λ=0

tan(

θ

2

)=

−2±

4+4

λ

2

tan(θ2)=-2±4+4λ22λ

=

−1±

1+

λ

2

λ

=-1±1+λ2λ

tan(

θ

1

2

)=

−1+

1+

λ

2

λ

tan(θ12)=-1+1+λ2λ

tan(

θ

2

2

)=

1−−

1+

λ

2

λ

tan(θ22)=1--1+λ2λ

tan(

θ

1

2

)tan(

θ

2

2

)=(

−1+

1+

λ

2

λ

)(

−1−

1+

λ

2

λ

)=−1

tan(θ12)tan(θ22)=(-1+1+λ2λ)(-1-1+λ2λ)=-1

.pls mark it brainiest

Similar questions