Math, asked by Devkii4943, 1 year ago

If the two roots of the equation, (a-1)(x^{4}+x^{2}+1)+(a+1)(x^{2}+x+1)^{2}=0 are real and distinct, then the set of all values of ‘a’ is :
(a) \bigg \lgroup 0,\ \frac{1}{2}\bigg \rgroup (b) \bigg \lgroup -\frac{1}{2}, 0\bigg \rgroup  \cup \bigg \lgroup0,\ \frac{1}{2}\bigg \rgroup (c) \bigg \lgroup -\frac{1}{2}, 0\bigg \rgroup
(d) (–∞, –2) ∪ (2, ∞)

Answers

Answered by AISHRAJPUT
0

(a) \bigg \lgroup 0,\ \frac{1}{2}\bigg \rgroup (b) \bigg \lgroup -\frac{1}{2}, 0\bigg \rgroup \cup \bigg \lgroup0,\ \frac{1}{2}\bigg \rgroup (c) \bigg \lgroup -\frac{1}{2}, 0\bigg \rgroup

(d) (–∞, –2) ∪ (2, ∞)

Similar questions