Physics, asked by Ritivikroshan, 1 year ago

If the unit of force, energy and velocity are 20N, 200 J and 5 m/s. find r=the unit of mass length and time.

Answers

Answered by Anonymous
123

Solution:

Given:

=> Force = 20 N

=> Energy = 200 J

=> Velocity = 5 m/s

To Find:

=> Unit of mass, length and time.

Formula used:

\sf{\implies [M^{1}L^{1}T^{-2}]\;\;\;\;(Dimensional\;formula\;of\;force)}

\sf{\implies [M^{1}L^{2}T^{-2}]\;\;\;\;(Dimensional\;formula\;of\;Energy)}

\sf{\implies [M^{0}L^{1}T^{-1}]\;\;\;\;(Dimensional\;formula\;of\;Velocity)}

So,

\sf{\implies M^{1}L^{1}T^{-2}=20\;\;\;\;.........(1)}

\sf{\implies M^{1}L^{2}T^{-2}=200\;\;\;\;.........(2)}

\sf{\implies M^{0}L^{1}T^{-1}=5\;\;\;\;.........(3)}

Now, compair Equation (1) and (2), we get

\sf{\implies \dfrac{M^{1}L^{2}T^{-2}}{M^{1}L^{1}T^{-2}}=\dfrac{200}{20}}

\large{\boxed{\boxed{\blue{\sf{\implies L = 10}}}}}

Put the value of L in Equation (3), we get

\sf{\implies M^{0}L^{1}T^{-1}=5}

\sf{\implies 10\times \dfrac{1}{T}=5}

\sf{\implies T = \dfrac{10}{5}}

\large{\boxed{\boxed{\red{\sf{\implies T = 2}}}}}

Put the value of L and T in Equation (1), we get

\sf{\implies M^{1}L^{1}T^{-2}=20}

\sf{\implies M\times 10\times \bigg(\dfrac{1}{2}\bigg)^{2}=20}

\sf{\implies M\times 10\times \dfrac{1}{4}=20}

\sf{\implies M \times \dfrac{10}{4} =20}

\large{\boxed{\boxed{\green{\sf{\implies M = 8}}}}}

So, unit of

=> Mass = 8 kg

=> Length = 10 m

=> Time = 2 sec


Anonymous: Best
Answered by BrainlyConqueror0901
31

{\bold{\underline{\underline{Answer:}}}}

{\bold{\therefore Mass=8\:Kg}}

{\bold{\therefore Length=10\:m}}

{\bold{\therefore Time=2\:sec}}

{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

• In the given question information given about the unit of force, energy and velocity are 20N, 200 J and 5 m/s.

• We have to find the unit of mass length and time.

 \underline \bold{Given : } \\  \implies Force= 20 \: N \\  \\  \implies Energy = 200 \: J\\  \\  \implies Velocity = 5 \: m/s \\  \\  \underline \bold{To \: Find : } \\  \implies Unit \: of \: Mass = ? \\  \\  \implies Unit \:o f \: Length = ? \\  \\  \implies Unit \: of \: Time = ?

• According to given question :

 \bold{By \: usin g\: Dimensions : } \\  \implies Force =  [{M}^{1}  {L}^{1}  {T}^{ - 2}]  \\  \\  \implies 20 =[ {M}^{1}  {L}^{1}  {T}^{ - 2} ]-  -  -  -  - (1) \\ \\ \bold{For \: Energy : } \\ \implies Energy =   [{M}^{1}  {L}^{2}  {T}^{-2} ]</p><p>\\\\ \implies 200=[{M}^{1}  {L}^{2}  {T}^{-2}]  -  -  -  -  - (2)\\  \\   \bold{For \: Velocity : } \\  \implies Velocity =  [{M}^{0} {L}^{1}   {T}^{-1}]  \\  \\  \implies 5 = [{M}^{0} {L}^{1}   {T}^{-1} ]-  -  -  -  - (3) \\  \\  \bold{dividing\: (1) \: and \: (2)} \\  \\  \implies  \frac{  \cancel{{M}^{1}}  {L}^{2}   \cancel{{T}^{-2} } }  { \cancel{{M}^{1} } {L}^{1}   \cancel{{T}^{ - 2}}} =  \frac{ \cancel{200}}{ \cancel{20}}  \\  \\  \implies {L}^{2 - 1}  = 10 \\  \\   \bold{\implies {L}  = 10 \: m} \\  \\  \bold{Putting \: value \: f \: l \: in \: (2)} \\  \implies \: 10[{M}^{0}   {T}^{-1} ]= 5 \\  \\  \implies  {T}^{ - 1}  =  \frac{ \cancel5}{ \cancel{10}}  \\  \\   \bold{\implies T = 2 \: sec } \\  \\   \bold{Putting \: value \: of \:T   \:a nd \:  L\: in \:(1)} \\  \implies  {M}^{1}  {L}^{1}  {T}^{ - 2}= 20 \\  \\  \implies  [{M}^{1}]10 \times  (\frac{1}{2} )^{2}  = 20 \\  \\  \implies[{M}^{1}] = 2\times 4 \\  \\  \bold{ \implies {M}^{1} = 8 \: kg}


Anonymous: Fantastic
Similar questions