if the value of (a+b)and ab are 12 and 32 respectively, find the value of a^2+b^2and (a-b) ^2.
Answers
Answered by
8
Answer:
a² + b² = 80 , ( a - b )² = 16
Step-by-step explanation:
Given ---> a + b = 12 and ab = 32
To find ---> a² + b² = ? , (a - b )² = ?
Solution---> We have two identities
(1) ( a + b )² = a² + b² + 2ab
(2) ( a - b )² = a² + b² - 2ab
ATQ,
a + b = 12
Squaring both sides
( a + b )² = ( 12 )²
=> a² + b² + 2ab = 144
=> a² + b² = 144 - 2ab
=> a² + b² = 144 - 2 ( 32 )
=> a² + b² = 144 - 64
=> a² + b² = 80
Now
(a - b )² = a² + b² - 2ab
= ( a² + b² ) - 2 ( ab )
= ( 80 ) - 2 ( 32 )
= 80 - 64
( a - b )² = 16
Similar questions