Math, asked by Bigdog2006, 8 months ago

If the value of x is 8-√63 then find the value of √x-1/√x

Answers

Answered by Anonymous
2

If the value of x is 8-√63 then find the value of √x-1/√x

Attachments:
Answered by anindyaadhikari13
1

\star\:\:\:\bf\large\underline\blue{Question:-}

  • If x = 8 -  \sqrt{63} , find the value of  \sqrt{x}  -  \frac{1}{ \sqrt{x} }

\star\:\:\:\bf\large\underline\blue{Solution:-}

x = 8 -  \sqrt{63}

Therefore,

 \frac{1}{x} =  \frac{1}{8 -  \sqrt{63} }

 =  \frac{1}{8 -  \sqrt{63} }  \times  \frac{8 +  \sqrt{63} }{8 +  \sqrt{63} }

 =  \frac{8 +  \sqrt{63} }{ {(8)}^{2}  -  {( \sqrt{63} )}^{2} }

 =  \frac{8 +  \sqrt{63} }{64 - 63}

 =  \frac{8 +  \sqrt{63} }{1}

 = 8 +  \sqrt{63}

So,

x +  \frac{1}{x}  = 8 -  \sqrt{63}  + 8 +  \sqrt{63}

 = 16

 \implies x +  \frac{1}{x}  + 2 = 18

 \implies  {( \sqrt{x} )}^{2}  +  \frac{1}{ \sqrt{ (x)}}  + 2 \times  \sqrt{x}   \times  \frac{1}{ \sqrt{x} } = 18

 \implies {( \sqrt{x}  +  \frac{1}{ \sqrt{x} } )}^{2}  = 20

 \implies {( \sqrt{x}  +  \frac{1}{ \sqrt{x} } )}  =  \sqrt{20}

 \implies  \sqrt{x}  +  \frac{1}{ \sqrt{x} }   =  2\sqrt{5}

\star\:\:\:\bf\large\underline\blue{Answer:-}

  •  \implies  \sqrt{x}  +  \frac{1}{ \sqrt{x} }   =  2\sqrt{5}
Similar questions