Math, asked by cbhoir6789, 1 month ago

If the values ​​p = 1 and q = –2 are the roots of the quadratic equation then the quadratic equation is *

1️⃣ x² + 2x –1 = 0
2️⃣ x² - x - 2 = 0
3️⃣ x² - 2x + 1 = 0
4️⃣ x² + x + 2 = 0​

Answers

Answered by kailashmannem
87

 \Large{\bf{\green{\mathfrak{\dag{\underline{\underline{Given:-}}}}}}}

  • Zeros of a polynomial are 1 and - 2

 \Large{\bf{\orange{\mathfrak{\dag{\underline{\underline{To \: Find:-}}}}}}}

  • The Quadratic equation

\Large{\bf{\red{\mathfrak{\dag{\underline{\underline{Solution:-}}}}}}}

We know that,

  • Any Quadratic equation given with roots  \alpha and  \beta is of the form,

 \boxed{\pink{\sf x^2 \: - \: (\alpha \: + \: \beta) \: x \: + \: \alpha \beta \: = \: 0}}

  • Here,

With given zeros p and q,

 \implies{\blue{\sf x^2 \: - \: (p \: + \: q) \: x \: + \: pq \: = \: 0}}

  • Given that,

  • p = 1

  • q = - 2

Substituting the values,

  • x² - (1 + (- 2)) x + 1 * - 2 = 0

  • x² - (1 - 2) x - 2 = 0

  • x² - (- 1) x - 2 = 0

  • x² + 1x - 2 = 0

  • + x - 2 = 0

Therefore,

  •  \underline{\boxed{\purple{\tt{Quadratic \: equation \: = \: x^2 \: + \: x \: - \: 2 \: = \: 0}}}}

 \Large{\bf{\blue{\mathfrak{\dag{\underline{\underline{Extra \: Information:-}}}}}}}

  • Any quadratic polynomial is of the form ax² + bx + c = 0.

  • Any Quadratic equation with given zeros p and q is of the form - (p + q) x + pq.
Answered by Anonymous
109

Given :-

  • The values of p = 1 and q = - 2 are the roots of the quadratic equation.

To Find :-

  • What is the quadratic equation.

Formula Used :-

\clubsuit General Formula For Quadratic Equation :

\longmapsto \sf\boxed{\bold{\pink{{x}^{2} - (\alpha + \beta)x + \alpha\beta =\: 0}}}\\

Solution :-

Given :

  • p = 1
  • q = - 2

Hence, we can write as :

 \implies \sf {x}^{2} - (p + q)x + pq =\: 0

By putting the value of p = 1 and q = - 2 we get,

 \implies \sf {x}^{2} - (1 + \{ - 2\})x + 1 \times (- 2) =\: 0\\

 \implies \sf {x}^{2} - (1 - 2)x + ( - 2) =\: 0

\implies \sf {x}^{2} - 1x + 2x - 2 =\: 0

 \implies \sf {x}^{2} + 1x - 2 =\: 0

Now, we can write as,

\implies\sf\bold{\red{{x}^{2} + x - 2 =\: 0}}\\

\therefore The quadratic equation is + x - 2 = 0.

Similar questions
Math, 1 month ago