If the vectors ai + j + k, i + bj + k and i + j + ck (a ≠ b ≠ c ≠ 1) are coplanar, then the value of [1] / [1 − a] + [1] / [1 − b] + [1] / [1 − c] = _________
Answers
Answered by
2
Explanation:
∣
∣
∣
∣
∣
∣
∣
a
1−a
1−a
1
b−1
0
1
0
c−1
∣
∣
∣
∣
∣
∣
∣
= 0
On expanding, we get
a (b − 1) (c − 1) − (1 − a) (c − 1) − (1 − a) (b − 1) = 0
On dividing by (1 − a) (1 − b) (1 − c), we get
[a] / [1 − a] + [1] / [1 − b] + [1] / [1 − c] = 0
⇒ [1] / [1 − a] + [1] / [1 − b] + [1] / [1 − c]
= {[1] / [1 − a]} − {[a] / [1 − a]}
= 1
Similar questions
Math,
8 hours ago
Math,
8 hours ago
Math,
16 hours ago
English,
16 hours ago
India Languages,
8 months ago