Physics, asked by hamsiharshitha, 11 months ago

If the vectors \vec{A} = a\hat{i} + a\hat{j} + 3\hat{k} A =a i ^ +a j ^ ​ +3 k ^ and \vec{B} = a\hat{i}-2\hat{j}-\hat{k} B =a i ^ −2 j ^ ​ − k ^ are perpendicular to each other them the positive value of 'a' is

Answers

Answered by nirman95
1

Given:

A and B are perpendicular vectors;

\vec{A} = a\hat{i} + a\hat{j} + 3\hat{k}

\vec{B} = a\hat{i}-2\hat{j}-\hat{k}

To find:

Value of "a".

Diagram:

\boxed{\setlength{\unitlength}{1cm}\begin{picture}(6,6)\put(3,2){\vector(1,1){1}}\put(3,2){\vector(-1,1){2}}\put(4,3.5){$\vec{A}$}\put(1,4.25){$\vec{B}$}\put(3,2.5){$90^{\circ}$}\end{picture}}

Calculation:

For perpendicular vectors , the scalar (dot) product comes as zero.

 \sf{ \therefore \:  \vec{A} \: . \:  \vec{B} = 0}

 \sf{  \implies \:  (a \hat{i} + a \hat{j} + 3 \hat{k})\: . \:  (a \hat{i} - 2 \hat{j} -  \hat{k})= 0}

 \sf{ \implies \:  {a}^{2}  - 2a  -  3 = 0}

 \sf{ \implies \:  {a}^{2}  - 3a + a -  3 = 0}

 \sf{ \implies \:  a(a - 3)   + 1( a -  3) = 0}

 \sf{ \implies \:  (a + 1)(a - 3)   = 0}

Either a = -1 or a = +3

Since the question asks for only positive value, final answer is:

 \boxed{ \rm{ \: a =  + 3}}

Similar questions