Physics, asked by guprhd, 1 month ago

If the velocity at x=0m is 0.8m/s, find the velocity at x=1.4m.​

Attachments:

Answers

Answered by Sayantana
4

Since in the graph, acceleration is variable with 'x' , we can't use equation of motion.

so use generally equation of acceleration.

\rightarrow a = \dfrac{dv}{dt}

• Expand it more:

\implies \rm a= \dfrac{dv}{dt} =\dfrac{dv\times dx}{dx\times dt}

\implies \bf a= v \dfrac{dv}{dx}

-----------

  • In the graph we can use the equation of y=mx+c
  • slope will be same for distance 0.8/1.4 m, so just take that 0.4 to 0.8 for calculating slope , as acceleration is same for both.

\longrightarrow \rm y = mx+ c

\longrightarrow \rm a = \dfrac{dy}{dx}x

\longrightarrow \rm a = \dfrac{0.4-0.2}{0.8-0.4}x

\longrightarrow \rm a = \dfrac{0.2}{0.4}x

\longrightarrow \rm a = \dfrac{1}{2}x

\longrightarrow \rm v\dfrac{dv}{dx} = \dfrac{1}{2}x

Integrate it by putting limits:

\longrightarrow vdv = \dfrac{1}{2}xdx

\longrightarrow \displaystyle \rm 2\int vdv = \int xdx

\longrightarrow \displaystyle \rm 2\int_{0.8} ^{v} \dfrac{v^2}{2} = \int_{0}^{1.4} \dfrac{x^2}{2}

\longrightarrow \rm 2(v^2 -0.8^2) = 1.4^2-0^2

\longrightarrow \rm 2(v^2 -0.64) = 2.96

\longrightarrow \rm v^2 -0.64 = 1.48

\longrightarrow \rm v^2 = 2.12

\longrightarrow \rm v = \sqrt{2.12}

\longrightarrow \rm v \approx 1.46\: ms^{-1}

so velocity at x=1.4 is 1.46m/s.

Similar questions