Physics, asked by amrik403, 10 months ago

If the velocity of a particle is 2i^+3j^-4^ and it's acceleration is -i^+2j^+k^ and angle btw them is nπ÷4 the value of n is

Answers

Answered by nirman95
107

Answer:

Given:

2 vectors have been provided.

 \vec v = 2 \hat i + 3 \hat j  -  4 \hat k

 \vec a =  -1  \hat i + 2 \hat j   + 1 \hat k

Angle between the vectors be θ

 \boxed{ \theta =  \dfrac{n\pi}{4} }

To find:

Value of n

Concept:

In this type of questions , we will try to use Dot Product or Scalar product to find out the angle between the vectors .

Calculation:

 \vec v. \vec a =  | \vec v|  \times  | \vec a|  \times  \cos( \theta)

 =  > ( 2 \hat i + 3 \hat j  -  4 \hat k).(  - \hat i + 2 \hat j   +  \hat k)=   \sqrt{29}  \times   \sqrt{6}  \times  \cos( \theta)

 =  >  (-2 + 6 - 4) =  \sqrt{29}  \times  \sqrt{6}  \times  \cos( \theta)

 =  >  \cos( \theta)  = 0

 =  >  \cos( \frac{n\pi}{4} )  = 0

 =  >  \dfrac{n\pi}{4}  =  \dfrac{\pi}{2}

 =  > n =  \dfrac{4}{2}

 = > n = 2

So final answer :

  \boxed{\boxed{ \red{ \huge{ \bold{ \underline{n = 2}}}}}}

Answered by Saby123
64

 </p><p>\huge{\tt{\pink {Hello!!! }}}

</p><p>\tt{\red{vec\: v=2 \hat i + 3 \hat j - 4 \hat k }}

</p><p>\tt{\purple{\vec \:a = -1 \hat i + 2 \hat j + 1 \hat k }}

</p><p>\tt{\blue{Let \:Angle\: between \:the \:vectors\: be \: \phi }}

</p><p>\tt{\huge{\violet{\boxed{\boxed{ \phi= \frac{n\pi}{4} } }}}}

</p><p>\tt{\fbox{\fbox{\rightarrow {\mathfrak {\red{ Dot\: Product\: or\: Scalar \:product \: - }}}}}}

</p><p>\vec v. \vec a = | \vec v| \times | \vec a| \times \cos( \phi)

</p><p>= &gt; ( 2 \hat i + 3 \hat j - 4 \hat k).( - \hat i + 2 \hat j + \hat k)= \sqrt{29} \times \sqrt{6} \times \cos( \theta)

</p><p>= &gt; (-2 + 6 - 4) = \sqrt{29} \times \sqrt{6} \times\cos( \phi)

</p><p>= &gt; \cos( \phi) = 0

= &gt; \cos( \frac{n\pi}{4} ) = 0

</p><p>= &gt; \dfrac{n\pi}{4} = \dfrac{\pi}{2}

</p><p>\purple{\boxed{\boxed{\huge{\mathfrak{= &gt; n = \frac{4}{2} = 2 }}}}}

Similar questions