Chemistry, asked by mammuqa, 9 months ago

If the velocity of an electron in Bohr's first orbit is 2.19×106ms−1. What will be de Broglie wavelength associated with it?

Answers

Answered by AngleKhan
3

Answer:

v = 2.19 * 10⁶  m/s

λ = h / p

h = Planck's constant = 6.636 * 10⁻³⁴  units

m = mass of an electron = 9.11 * 10⁻³¹  kg

Bohr's first orbit  :  n = 1,  K shell in an atom... like Hydrogen atom..

λ = 6.636 * 10⁻³⁴ / [ 9.11 * 10⁻³¹ * 2.19 * 10⁶ ]    meters

  =  0.3326 * 10⁻⁹ meters

hope it will help u

Answered by MajorLazer017
11

Answer :

  • de Brogile wavelength = 332 pm.

Step-by-step explanation :

Given that,

  • Velocity of electron, v = \rm{2.19\times{}10^6\:ms^{-1}}

Also,

  • Mass of electron, m = \rm{9.11\times{}10^{-31}\:kg}
  • Planck's constant, h = \rm{6.626\times{}10^{-34}\:kgm^2s^{-1}}

\hrulefill

We know, according to de Broglie's equation,

\rm{\lambda=\dfrac{h}{mv}}

Putting the given values, we get,

\implies\rm{\lambda=\dfrac{h}{mv}=\dfrac{6.626\times{}10^{-34}\:kgm^2s^{-1}}{(9.11\times{}10^{-31}\:kg)(2.19\times{}10^6\:ms^{-1})}}

\implies\rm{\lambda=3.32\times{}10^{-10}\:m=}\:\bold{332\:pm.}

Similar questions