Chemistry, asked by BShreyaAnjali, 1 month ago

If the velocity of electron in Bohr’s first orbit is 6.626 106 m/s, calculate de Broglie wavelength (approximately) associated with it?

Answers

Answered by ambaliyaarjun27
64

Explanation:

Correct option is

C

3.32×10

−10

m

According to de Broglie's equation

λ=

mv

h

where, λ= de-Broglie wavelength

h=6.626×10

−34

Js=Planck's constant

m=mass of electron=9.1×10

−31

kg

velocity of electron, v=2.19×10

6

m/s

upon substitution we get:

λ=

9.1×10

−31

×2.19×10

6

6.626×10

−34

λ=0.332×10

−9

=3.32×10

−10

m

Answered by SparklingBoy
44

 \large \dag Question :-

If the velocity of electron in Bohr’s first orbit is 6.626 × 10⁶ m/s, calculate de Broglie wavelength (approximately) associated with it ?

 \large \dag Answer :-

\red\dashrightarrow\underline{\underline{\sf  \green{Wavelength   \:  is \:  1.1 \: A°}} }\\

 \large \dag Step by step Explanation :-

We Know that according to de - Broglie equation :-

\large \bf \red\bigstar \: \: \orange{ \underbrace{ \underline{   \blue{      \pmb\lambda=   \small\frac{h}{mv}   \:  \:  \: }}}}

where,

 \large \lambda = de - Broglie wavelength

  • m = mass of electron

  • v = velocity of electron

  • h = Planck's Constant

☆ Now Here we have,

 \sf Planck's  \: const. =  \pmb{h = 6.626 \times {10}^{ - 34} Js}

 \sf mass  \: of \: e {}^{ - }  =  \pmb{m = 9.1 \times1 {0}^{ - 31} kg } \\

 \sf vel.  \: of \: e {}^{ - }  =  \pmb{v =6.626  \times1 {0}^{6} m/s } \\

Putting Values in de - Broglie equation ;

:\longmapsto \rm  \lambda = \frac{6.626 \times 10 {}^{ - 34} }{(9.1 \times  {10}^{ - 31})(6.626 \times  {10}^{6})  }  \\  \\

:\longmapsto \rm  \lambda = \frac{\cancel{6.626 } \times 10 {}^{ - 34} }{9.1 \times  {10}^{ - 31} \times  \cancel{6.626 }\times  {10}^{6}  }  \\  \\

:\longmapsto \rm  \lambda =  \frac{10 {}^{ - 34} }{9.1 \times  {10}^{ - 31}  \times  {10}^{6} }  \\  \\

:\longmapsto \rm  \lambda =  \frac{ {10}^{ - 34} }{9.1 \times  {10}^{ - 25} }  \\  \\

:\longmapsto \rm  \lambda =  \frac{10  {}^{ - 34} \times  {10}^{25}  }{9.1}  \\  \\

:\longmapsto \rm  \lambda =  \frac{ {10}^{ - 9} }{9.1}  \\  \\

:\longmapsto \rm  \lambda = 0.109 \times  {10}^{ - 9}  \\  \\

[/tex]</p><p></p><p>[tex]\purple{ :\longmapsto  \underline {\boxed{{\pmb{ \frak{ \lambda = 1.1 \times  {10}^{ - 10 }  \: m \: (approx) } }}}}} \\\\

 \blue\rm  \large \blue\bigstar \red{  \rm\: In \:   Angstorm( A°) :  - }

 \rm \lambda = 1.1 \times  {10}^{ - 10 }  \times  {10}^{10} A°\\  \\

\purple{ \large :\longmapsto  \underline {\boxed{{\pmb{ \frak{ \lambda =  \text{1.1  \:  A°}\: (approx) } }}}}} \\

Similar questions