Physics, asked by abhi34583, 1 year ago

If the velocity of light c,the constant of gravitation G, and planks constant h be the chosen as fundamental units, Find the dimension of mass,length, time in terms of c, G, h. ​

Answers

Answered by Anonymous
8

Q. If the velocity of light c,the constant of gravitation G, and planks constant h be the chosen as fundamental units, Find the dimension of mass,length, time in terms of c, G, h.

Ans:-

(m) = ( {h}^{ \frac{1}{2} }  {c}^{ \frac{1}{2} }  {g}^{ \frac{ - 1}{2} } )

(l) =  ({h}^{ \frac{1}{2} }  {c}^{ \frac{ - 3}{2} }  {g}^{ \frac{ 1}{2} } )

(t) = ( {h}^{ \frac{1}{2} }  {c}^{ \frac{ - 5}{2} }  {g}^{ \frac{1}{2} } )

 = [tex](t) = ( {h}^{ \frac{1}{2} }  {c}^{ \frac{ - 5}{2} }  {g}^{ \frac{1}{2} } )[/tex]

(t) = ( {h}^{ \frac{1}{2} }  {c}^{ \frac{ - 5}{2} }  {g}^{ \frac{1}{2} } )

Explanation:-

We have,

(c) = (l {t}^{ - 1} )

(g) = ( {m}^{ - 1}  {l}^{3}  {t}^{ - 2} )

(h) =  (m {l}^{2}  {t}^{ - 1} )

 =  >  \frac{(h)(c)}{(g)}  =  \frac{m {l}^{2}  {t}^{ - 1 }  \times l {t}^{ - 1} }{ {m}^{ - 1} {l}^{3} {t}^{ - 2}   }

 =  {m}^{2}

(m) =  {h}^{ \frac{1}{2} }  {c}^{ \frac{1}{2} }  {g}^{ \frac{ - 1}{2} }

Again,

 \frac{(h)}{(c)}  =  \frac{m {l}^{2} {t}^{ - 1}  }{l {t}^{ - 1} }

 = ml

2 =  > (l) =  \frac{h}{c(m)}

 =  \frac{h}{c {h}^{ \frac{1}{2}  } {c}^{ \frac{1}{2} }  {g}^{ \frac{ - 1}{2} }  }

 = ({h}^{ \frac{1}{2} }  {c}^{ \frac{ - 3}{2} }  {g}^{ \frac{ 1}{2} } )

(c) = l {t}^{ - 1}

(t) =  \frac{(l)}{c}

 =  \frac{({h}^{ \frac{1}{2} }  {c}^{ \frac{ - 3}{2} }  {g}^{ \frac{ 1}{2} } )}{c}

Answered by sivaprasath
16

Answer:

Explanation:

Given :

If the velocity of light (c) ,the constant of gravitation (G) , and plancks constant (h) be the chosen as fundamental units,

Find the dimension of mass,length, time in terms of c, G, h.

Solution :

We know that,.

The unit of SPEED of light (c) = m/s = [LT⁻¹]

The unit of constant of GRAVITATION = Nm²/kg² = m³/kgs² = [M⁻¹L³T⁻²]

The unit for planck's constant = Js = kgm²/s² × s = kgm²/s = [ML²T⁻¹]

To find units for mass (m) , length (l)  , time (s),

We should use the 4 operators in such way that, we should get them,.

⇒ For mass(m),

[ML^0T^0] = c^xG^yp^z

[ML^0T^0] = [M^{(z - y)}L^{(x+3y+2z)}T^{(-x-2y-z)}]

⇒ z - y = 1 , x + 3y + 2z = 0 , -x - 2y - z = 0,

⇒ z - y = 1 .  y = - z,

z = \frac{1}{2} , y = \frac{-1}{2}, x = \frac{1}{2}

⇒ MASS = [c^xG^yp^z] = [c^{\frac{1}{2}}G^{ \frac{-1}{2}}h^{ \frac{1}{2}}]

For length,

let [M^0LT^0] = [c^xG^yh^z]

[M^0LT^0] = [M^{(z - y)}L^{(x+3y+2z)}T^{(-x-2y-z)}]

⇒ z - y = 0 , x + 3y  + 2z = 1 , - x - 2y - z = 0

⇒ z = y , y + z = 1 , x + 5y = 1

x = \frac{-3}{2} , y = \frac{1}{2} , z = \frac{1}{2}

⇒ LENGTH = c^xG^yh^z = c^{\frac{-3}{2}}G^{\frac{1}{2}}h^{\frac{1}{2}}

For time,

let [M^0L^0T] = [c^xG^yh^z]

[M^0L^0T] = [M^{(z - y)}L^{(x+3y+2z)}T^{(-x-2y-z)}]

⇒ z - y = 0 , x + 3y + 2z = 0 , - x - 2y - z = 1

⇒ z = y , y + z = 1 , x + 5z = 0

x = \frac{-5}{2} , y = \frac{1}{2} , z = \frac{1}{2}

⇒ TIME = c^xG^yh^z = c^{\frac{-5}{2}}G^{\frac{1}{2}}h^{\frac{1}{2}}

Similar questions