Math, asked by karan3129, 11 months ago

If the vertices of a triangle are (1,-3), (4, p) and (-9, 7) and its area is 15sq.units, find
the values of p.

Answers

Answered by nishatfatima5727
0

Answer:

fhiohgfyyhb

Step-by-step explanation:

fjiuh

fkoigb

fyjknk

Answered by SushmitaAhluwalia
0

The values of p are -3, -9.

  • Given vertices are

              A(x_{1},y_{1})=(1,-3)

              B(x_{2},y_{2})=(4,p)

              C(x_{3},y_{3})=(-9,7)

  • Area of triangle = 15 sq units

         \frac{1}{2}|x_{1}(y_{2}-y_{3})+x_{2}(y_{3}-y_{1})+x_{3}(y_{1}-y_{2})|=15

         \frac{1}{2}|1(p-7)+4(7+3)-9(-3-p)|=15

          |p - 7 + 40 + 27 + 9p| = 30

          10p + 60 = ± 30

        Case(I):

           10p + 60 = 30

            10p = 30 - 60

            10p = -30

             p = - 3

          Case(II):

             10p + 60 = -30

             10p = -60 - 30

             10p = - 90

               p = -9

             

Similar questions