Math, asked by vodnalasaradhi55, 3 months ago

if the vertices of a triangle are (1, k), (4, -3) &(-9, 7) and it's area is 15 square units. find the value of K​

Answers

Answered by SugarCrash
45

Answer :

  • value of k is 3.

Solution :

Given :

  • Vertices of the triangle are (1,k) , (4,-3) and (-9,7).
  • Area of the triangle is 15unit².

To Find :

  • Value of k.

 \\ \boxed{ \sf \: Area_{triangle} = \dfrac{1}{2} [ x_{1}(y_{2} -y _{3}) +x _{2}(y_{3} - y_{1}) + x_{3}(y_{1} -y _{2}) ]} \\

We can find the value of k using the formula of Area of Triangle. We will substitute the given, the by simplifying we will get the value of k.

Here,

  • (x₁,y₁) = (1,k)
  • (x₂,y₂) = (4,-3)
  • (x₃,y₃) = (-9,7)
  • Area = 15 Unit.

  \\ \sf \: area = \dfrac{1}{2} [x _{1}(y_{2} - y_{3}) + x_{2}(y_{3} - y_{1}) + x_{3}(y_{1} - y_{2}) ] \\ \\

\LARGE\color{blue}\mathfrak{Substituting\: the\: values}

 \\ \implies \sf \: 15 = \dfrac{1}{2} [1( - 3 - 7) + 4(7 - k) - 9(k + 3) ] \\ \\ \implies \sf \: 15 \times 2 = 1( - 10) + 4(7 - k) - 9(k + 3) \\ \\ \implies\sf \: 30 = - 10 + 28 - 4k - 9k - 27 \\

 \implies \sf \: 30 = - 9 - 13k \\ \\ \implies \sf \: 30 + 9 = 13k \\

 \implies\sf \: 39 = 13k \\ \\ \implies \sf \: k = \cancel\frac{^3 39}{13} \\ \\\implies \underline{ \boxed{ \sf \: \pink{k = 3}}} \\ \\

Hence ,

value of k is 3.

{\fcolorbox{red}{blue}{\orange{\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: SugarCrash\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:}}} 

Similar questions