If the vertices of abc are a(5,-11) b(-3,-2) and c(-1,8) find the length of median through triangle
Answers
Answered by
1
x1,y1) = (5,-1) ….. (x2,y2) = (-3,-2) …. (x3,y3) = (-1,8) ……
So, centroid(X,Y) = { (x1 + x2 + x3)/3 , (y1 + y2 + y3)/3 }
-------> (X,Y) = { (5 – 3 - 1 / 3) , (- 1- 2 + 8)/3) ……
-------> (X,Y) = (1/3 , 5/3) .......
For Median :):):):
let the point where median intersects the base be D(x,y) ......
As, the median bisects the base .....
(x,y) = { (x2 + x3 )/2 , (y2 + y3)/2 }
------> (x,y) = { (-3-1)/2 , (-2+8)/2 }
------> (x,y) = (-2 , 3)
Now , the length of median is AD = √(x - x1)2 + (y - y1)2
------> AD = √(-2 - 5)2 + (3 + 1)2
------> AD = √(49 + 16)
------> AD = √65 units .......
So, centroid(X,Y) = { (x1 + x2 + x3)/3 , (y1 + y2 + y3)/3 }
-------> (X,Y) = { (5 – 3 - 1 / 3) , (- 1- 2 + 8)/3) ……
-------> (X,Y) = (1/3 , 5/3) .......
For Median :):):):
let the point where median intersects the base be D(x,y) ......
As, the median bisects the base .....
(x,y) = { (x2 + x3 )/2 , (y2 + y3)/2 }
------> (x,y) = { (-3-1)/2 , (-2+8)/2 }
------> (x,y) = (-2 , 3)
Now , the length of median is AD = √(x - x1)2 + (y - y1)2
------> AD = √(-2 - 5)2 + (3 + 1)2
------> AD = √(49 + 16)
------> AD = √65 units .......
Similar questions