Math, asked by goudmanisha652, 3 months ago

If the vertices of the triangle are (1, k) (4, -3) (-9, 7) and its area is 15square unut then find the value of k.​

Answers

Answered by Anonymous
36

GIVEN :-

  • Vertices of the triangle are (1,k) , (4,-3) and (-9,7).
  • Area of the triangle is 15unit².

 \\

TO FIND :-

  • Value of k.

 \\

TO KNOW :-

 \\  \boxed{ \sf \: area =  \dfrac{1}{2}  \{ x_{1}(y_{2} -y _{3}) +x _{2}(y_{3} - y_{1}) + x_{3}(y_{1} -y _{2}) \}}  \\

Here , (x₁,y₁) , (x₂,y₂) and (x₃,y₃) are co-ordinates of the vertices of triangle.

 \\

SOLUTION :-

Let,

  • (x₁,y₁) = (1,k)
  • (x₂,y₂) = (4,-3)
  • (x₃,y₃) = (-9,7)

 \\  \sf \: area =   \dfrac{1}{2}  \{x _{1}(y_{2} - y_{3}) + x_{2}(y_{3} - y_{1}) + x_{3}(y_{1} - y_{2}) \} \\  \\

We have , Area = 15unit².

Putting values,

 \\  \implies \sf \: 15 =  \dfrac{1}{2}  \{1( - 3 - 7) + 4(7 - k)  - 9(k + 3) \} \\  \\ \implies \sf \: 15 \times 2 = 1( - 10) + 4(7 - k) - 9(k + 3) \\  \\  \implies\sf \: 30 =  - 10 + 28 - 4k - 9k - 27 \\

 \implies \sf \: 30   =  - 9 - 13k \\  \\ \implies \sf \: 30 + 9 = 13k \\

  \implies\sf \: 39 = 13k \\  \\ \implies \sf \: k =   \cancel\frac{39}{13}  \\  \\\implies  \underline{ \boxed{ \sf \: k = 3}} \\  \\

Hence , value of k is 3.

Similar questions