Math, asked by NaveenRaj8957, 9 months ago

If the volume of a cone is 255 cubicm., what is the volume of a cylinder with same base radius and same height?

Answers

Answered by Anonymous
11

Solution

Given:-

  • Volume of cone = 255 cm³
  • Base, & Height of cone are same to cylinder .

Find:-

  • Volume of cylinder .

Explanation

Important Formula

Volume of cone = 1/3 .π.(r²).h

Volume of cylinder = π.r².h

A/C to question,

(Volume of cone = 255 cm³ )

➠ 255 = 1/3.(π.r².h)

➠ π.r².h = 255 × 3

➠ π.r².h = 765

But, condition A/c to question

Base & Height of cone are same to cylinder

So,

➠ Volume of cylinder = π.r².h

➠Volume of cylinder = 765 cm³

Hence

  • Volume of cylinder = 765 cm³

_________________

Answered by ButterFliee
2

\huge{\underline{\underline{\mathrm{\blue{GIVEN:-}}}}}

  • The Volume of cone = 255 cm³
  • The radius and height of the cone and cylinder are equal

\huge{\underline{\underline{\mathrm{\blue{NEED\:TO\:FIND:-}}}}}

Find the volume of cylinder = ?

\huge{\underline{\underline{\mathrm{\blue{FORMULA\:USED:-}}}}}

\large{\boxed{\bf{\green{Volume \: of \:cone = \frac{1}{3}π{r}^{2}h}}}}

\large{\boxed{\bf{\green{Volume \:of\:Cylinder = π{r}^{2} h }}}}

\huge{\underline{\underline{\mathrm{\blue{SOLUTION:-}}}}}

We have given that, the volume of cone is 255 cm³

Putting the values in formula, we get

\longrightarrow \large\bf{Volume\: of\: cone = \frac{1}{3}π{r}^{2}h}

\longrightarrow\bf{255 = \frac{1}{3}π{r}^{2}h}

\longrightarrow\bf{ 255\times 3 = π{r}^{2} h}

\longrightarrow\large\bf\green{ 765 = π{r}^{2} h....1)}

Radius and height of cylinder are equal to the radius and height of cone

\large\bf{Volume\:of\: cylinder = π {r}^{2} h}

\longrightarrow\bf\green{ π{r}^{2} h = 765 }[from ...1)]

Hence, the volume of cylinder is 765 cm³

\large{\underline{\underline{\mathrm{\blue{FINAL\:ANSWER:-}}}}}

\huge{\boxed{\boxed{\mathrm{\green{Volume\:of \:Cylinder = 765\: {cm}^{3}}}}}}

Similar questions