Math, asked by shindeyuvraj092, 7 months ago


If the volume of a hemisphere is 19404 cm", then the total surface area of the
hemisphere is :

Answers

Answered by christinajohn10c
3

Answer:

.

.

.

.

.

.

=4158  cm  

Answered by MoodyCloud
6
  • Total surface area of hemisphere is 87310.57 cm² (approximately)

Step-by-step explanation:

Given:-

  • Volume of hemisphere is 19404 cm³.

To find:-

  • Total surface area of hemisphere.

Solution:-

  • First we need Radius for Total surface area of hemisphere.

We know that,

 \boxed{\star \: \bold{Volume \: of\: hemisphere =  \cfrac{2}{3}  \pi r^{2}}}

In which,

  • r is Radius of hemisphere.

Volume of hemisphere = 19404 cm³

Put Volume of hemisphere in form:

 \longrightarrow \sf \bold{19404 =  \cfrac{2}{3} \times  \cfrac{22}{7} \times  {r}^{2}  }

 \longrightarrow \sf \bold{ \cfrac{19404 \times 3}{2} =  \cfrac{22}{7}  \times  {r}^{2}  }

 \longrightarrow \sf \bold{9702 \times 3 =  \cfrac{22}{7}  \times  {r}^{2} }

 \longrightarrow \sf \bold{ \cfrac{9702 \times 3 \times 7}{22}  =  {r}^{2} }

 \longrightarrow \sf \bold{ \cfrac{203742}{22}  =  {r}^{2} }

 \longrightarrow \sf \bold{9261 =  {r}^{2} }

 \longrightarrow \sf \bold{ \sqrt{9261} =  r}

 \longrightarrow \sf \bold{96.23 = r}

Or, r = 96.23

So, Radius of hemisphere is 96.23 (approx.)

 \boxed{\star \: \bold{Total \: surface\:area  =  3 \pi r^{2}}}

 \longrightarrow \sf \bold{3 \times  \cfrac{22}{7}  \times 96.23 \times 96.23}

 \longrightarrow \sf \bold{ \cfrac{611174.051}{7} }

 \longrightarrow \sf \bold{87310.57}

Therefore,

Total surface area of hemisphere is 87310.57 cm² (approximately).

Similar questions