Math, asked by vnragul, 3 months ago

If the volume of a hemisphere is four times its total surface area, what is its radius?​

Answers

Answered by mathdude500
1

\large\underline{\sf{Given- }}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \bull \:  \sf \: Volume_{(hemisphere)} = 4 \times TSA_{(hemisphere)}

\large\underline{\sf{To\:Find - }}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \bull \:  \sf \:radius_{(hemisphere)}

\begin{gathered}\Large{\bold{{\underline{Formula \: Used - }}}}  \end{gathered}

 \underline{ \boxed{ \bf \: Volume_{(hemisphere)} = \dfrac{2}{3} \pi \:  {r}^{3} }}

 \underline{ \boxed{ \bf \: TSA_{(hemisphere)} = 3\pi \:  {r}^{2}}}

where

\:  \:  \:  \:  \:  \:  \:  \:  \:  \bull \:  \sf \:r \:  =  \: radius_{(hemisphere)}

\large\underline{\sf{Solution-}}

\begin{gathered}\begin{gathered}\bf \: Let- \begin{cases} &\sf{radius \: of \: hemisphere  \: =  \:r \: units }\end{cases}\end{gathered}\end{gathered}

According to statement,

\rm :\longmapsto\:Volume_{(hemisphere)} = 4 \times TSA_{(hemisphere)}

\rm :\longmapsto\:\dfrac{2}{3} \pi \:  {r}^{3} = 4 \times 3\pi \:  {r}^{2}

\bf\implies \:r \:  =  \: 18 \: units

\overbrace{ \underline { \boxed { \bf \therefore \: The \: radius \: of \: hemisphere \:  =  \:18 \: units }}}

Additional Information :-

Perimeter of rectangle = 2(length× breadth)

Diagonal of rectangle = √(length² + breadth²)

Area of square = side²

Perimeter of square = 4× side

Volume of cylinder = πr²h

T.S.A of cylinder = 2πrh + 2πr²

Volume of cone = ⅓ πr²h

C.S.A of cone = πrl

T.S.A of cone = πrl + πr²

Volume of cuboid = l × b × h

C.S.A of cuboid = 2(l + b)h

T.S.A of cuboid = 2(lb + bh + lh)

C.S.A of cube = 4a²

T.S.A of cube = 6a²

Volume of cube = a³

Volume of sphere = 4/3πr³

Surface area of sphere = 4πr²

Volume of hemisphere = ⅔ πr³

C.S.A of hemisphere = 2πr²

T.S.A of hemisphere = 3πr²

Similar questions
Math, 10 months ago