Math, asked by gudiyanoor9, 7 months ago

If the Volume of a right circular cone is 100 π cm³ and height is 12cm, then let us write by calculating the slant height of the cone.​

Answers

Answered by sethrollins13
57

Given :

  • Volume of Cone = 100π
  • Height of Cone = 12cm

To Find :

  • Slant Height of the Cone

Solution :

Firstly we will find the Radius of Cone :

\longmapsto\tt{Volume=100\pi}

\longmapsto\tt{Height=12cm}

Using Formula :

\longmapsto\tt\boxed{Volume\:of\:Cone=\pi{{r}^{2}\dfrac{h}{3}}}

Putting Values :

\longmapsto\tt{100{\cancel{\pi}}={\cancel{\pi}}{{r}^{2}\dfrac{h}{3}}}

\longmapsto\tt{100={r}^{2}\times\dfrac{\cancel{12}}{\cancel{3}}}

\longmapsto\tt{100=4{r}^{2}}

\longmapsto\tt{{r}^{2}=\cancel\dfrac{100}{4}}

\longmapsto\tt{{r}^{2}=\sqrt{25}}

\longmapsto\tt\bold{r=5cm}

So , The Radius of Cone is 5cm...

Now :

For Slant Height :

\longmapsto\tt{{l}^{2}=\sqrt{{h}^{2}+{r}^{2}}}

\longmapsto\tt{{l}^{2}=\sqrt{{(12)}^{2}+{(5)}^{2}}}

\longmapsto\tt{{l}^{2}=\sqrt{144+25}}

\longmapsto\tt{{l}^{2}=\sqrt{169}}

\longmapsto\tt\bold{l=13cm}

Therefore, Slant height (l) of the cone is 13cm..

Similar questions