Math, asked by ITHIHASPENDEM, 4 months ago

If the volume of a right circular cone of height 9 cm is 48 π cm³, find the diameter of its base.​

Answers

Answered by 11177420
4

\red{\boxed{\boxed{ diameter = 12 cm }}}

Step-by-step explanation:

If the volume of a right circular cone of height 9 cm is 48 π cm³, find the diameter of its base.

________________

v =  48\pi \\ \frac{1}{3}  \: \pi \:  {r}^{2}  = 48\pi \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \frac{1}{3} {r}^{2}   =48 \:  \:  \:  \:  \:  \:  \:  \:  \\  {r}^{2}   = 144 \:  \:  \:  \\  \:  \:  \: r =  \sqrt{144}  \\ \:  \:  \:  r = 12 \: cm

then :

diameter

= 2 x r

= 2 x 12

= 24 cm

____________

{\purple{\boxed{ \:  \:  {\mathfrak{\underline{\purple{ @11177420 }}}} }}}

Answered by Sen0rita
64

Given - Volume and height of a right circular cone are 48πcm³ and 9cm respectively.

To Find - Diameter of it's base

_______________________

As we know that :

 \:  \:  \:

\underline{\boxed{\tt\purple{\bigstar \: volume \: of \: a \: right \: circular \: cone =  \frac{1}{3}\pi \:r {}^{2}h  }}}

 \:  \:

Put the values :

 \:  \:

\tt:\implies \:  \dfrac{1}{3} \pi \: r {}^{2} h = 48\pi \\  \\  \\ \tt:\implies \:   \frac{1}{3} \pi \: r {}^{2}9 = 48\pi \\  \\  \\ \tt:\implies \:  \frac{1}{\cancel{3}}\cancel{\pi} \: r {}^{2}\cancel{9} = 48\cancel{\pi} \\  \\  \\ \tt:\implies \: 3r {}^{2}  = 48 \\  \\  \\  \tt:\implies \:  {r}^{2}  =  \cancel{\frac{48}{3} } \\  \\  \\ \tt:\implies \:  {r}^{2}  = 16 \\  \\  \\ \tt:\implies \: r =  \sqrt{16 } \\  \\  \\ \tt:\implies \: r = \underline{\boxed{\sf\purple{4cm}}}\bigstar

 \:  \:

Now,

We know that

 \tt:\implies  \: D = 2 × R

 \tt:\implies D = 2 × 4

 \tt:\implies D = \underline{\boxed{\sf\purple{8cm}}} \bigstar

 \:  \:

\tt\therefore{\underline{Hence, \: the \: diameter \: of \: the \: base \: of \: the \: right \: circular \: cylinder \: is \: \bold{8cm}.}}

Similar questions