Math, asked by shaikhdanish1778, 3 months ago

If the volume of an cylinder is 700 cubic centimeters and the area of the base is 100 square centimeters, what is the length of the cylinder?*

1️⃣ 70 cm
2️⃣ 7 cm
3️⃣ 700 cm
4️⃣ 7 sqcm​

Answers

Answered by BrainlyRish
4

Given : Volume of an cylinder is 700 cm³ and the area of the base is 100 cm² .

Need To Find ; The Length or Height of Cylinder .

⠀⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

❍ Let's consider the Length or Height of Cylinder is h cm .

\dag\frak{\underline { As,\;We\:know\:that \::}}\\

\star\boxed {\pink{\sf{ Curved \:Surface \:area\:_{(Cylinder)} = \pi r^{2} h }}}\\\\

And ,

\star\boxed {\pink{\sf{ \:Area\:_{(Circle)} = \pi r^{2}  }}}\\\\

Where ,

  • r is the Radius of Circle and Cylinder & h is the Height or Length of Cylinder & \pi =\dfrac{22}{7}

Given that ,

  • Area of Base Circle of Cylinder is 100 cm²

Or ,

  • \pi r² = 100 cm²

⠀⠀⠀⠀⠀⠀\underline {\bf{\star\:Now \: By \: Substituting \: the \: known\: Values \::}}\\

\qquad \quad :\implies\sf{ 700 = \pi r^{2} h }\\\\

  • \pi r² = 100 cm²

\qquad \quad :\implies\sf{ 700 = 100( h) }\\\\

\qquad \quad :\implies\sf{ \cancel {\dfrac{700}{100}} =  h }\\\\

⠀⠀⠀⠀⠀\underline {\boxed{\pink{ \mathrm {  h = 7\: cm}}}}\:\bf{\bigstar}\\

Therefore,

⠀⠀⠀⠀⠀\therefore {\underline{ \mathrm { Hence,\:Length \:of\:Cylinder \:is\:\bf{7\: cm}}}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Answered by ItzWhiteStorm
44

Question

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bullet If the volume of an cylinder is 700 cubic cm and the area of the base is 100 sq.cm what is the length of the cylinder ?

\\ \\

To Find

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bullet Length of the cylinder = ?

\\ \\

Given

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bullet Volume of cylinder is 700 cubic cm.

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bullet Area of the base of cylinder is 100 sq cm.

\\ \\

Solution

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \longmapsto  \sf{Area \:  of \:  base \:  of  \: cylinder = \pi \: {r}^{2}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \longrightarrow \sf{Volume \:  of \:  the  \: cylinder =  \pi \:{r}^{2}h }

\\ \\

 \rm \bold{Let \:  us \:  consider  \: that, }\\ </p><p> \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \bullet \sf{\: h = length \:  of  \: the \:  cylinder}

\\ \\

 \:  \:  \:  \:  \:  \:  \:  \:  \to \sf{Volume \:  of \:  cylinder = Area  \: of  \: base \:  of \:  the  \: cylinder \times h}

 \:  \:  \:  \:  \:  \:  \:  \:  \to \sf{700= 100 \times h}

 \:  \:  \:  \:  \:  \:  \:  \:  \to \sf{h=   \cancel\frac{700}{100}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:   \to\sf{h = 7} \: cm

\\

 \rm{Therefore,The  \: length \:  of \:  the \:  cylinder = h = 7cm.}

Similar questions