Math, asked by anand2005gmailcom, 10 months ago

If the volume of cylinder is 12436 cm'3 and radius
and height of cylinder are in the ratio 2:3, find its
height.​

Answers

Answered by Anonymous
15

\huge\bold\red{\underline{\underline{{ANSWER:}}}}

Given :

• The volume of the cylinder = 12436 cm³.

• Radius and the hight of the cylinder are in the ratio 2:3.

To Find :

• Find the hight of the cylinder.

Solution :

• The volume of the cylinder = 12436 cm³.

• Let the height be h.

• Let the radium be r.

• Now,

 \frac{r}{h}  =  \frac{2}{3}

3r = 2h

⟶ \: r =  \frac{2h}{3}

• Now,

• Volume of the cylinder = 12436

\pi \: r ^{2} h = 12436

 (\frac{2h}{3} )^{2} h =  \frac{12436 \times 7}{22}

 \frac{4h ^{3} }{9}  =  \frac{12436 \times 7}{22}

⟶ \: h ^{3}  =  \frac{12436 \times 7 \times 9}{22 \times 4}

⟶ \: h ^{3}  = 8903.045

⟶ \: h = 20.72 = 21 \:cm.

• Hence, the height of the cylinder = 21 cm.

_______________________________________

<marquee> <font color ="black"><h1>✨ᎷᎪᎡᏦ ᎪՏ ᏴᎡᎪᏆΝᏞᏆᎬՏͲ ✨</marquee>

Similar questions