Math, asked by phaneendrasarma110, 5 months ago

If the volume of two spheres are in the ratio 64:27, then find the ratio of their surface areas?​

Answers

Answered by Anonymous
39

Given

  • Ratio of volume of two spheres is 64:27

To Find

  • Ratio of their surface areas ?

Solution

We know that,

 \boxed{ \tt{Volume \: of \: sphere = \frac{4}{3}\pi {r}^{3}  }}

let ‘v1’ and ‘v2’ are volume of two spheres and ‘r1’ and ‘r2’ are radius of these spheres respectively.

 \implies \bold{v1 =  \dfrac{4}{3}\pi {r1}^{3}  } \\

 \implies { \bold{v2 =  \dfrac{4}{3}\pi {r2}^{3}  }} \\

Now, ratio of v1 and v2

 \implies \bold{v1 : v2 =  \dfrac{4}{3} \pi {r1}^{3} \div  \dfrac{4}{3}\pi {r2}^{3} }  \\  \\  \implies \bold{ \dfrac{64}{27}  =  \cancel  {\dfrac{4}{3} \pi}  \: {r1}^{3}   \div   \cancel{\dfrac{4}{3}  \pi} \:  {r2}^{3} } \:  \:  \:  \:  \:  \:  \\  \\  \implies  \bold{ \dfrac{64}{27} =  \dfrac{ {r1}^{3} }{ {r2}^{3} }  } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\   \\  \implies  \bold{ \dfrac{ {4}^{3} }{ {3}^{3}  } =  \dfrac{ {r1}^{3} }{ {r2}^{3} }}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \implies \bold{ \dfrac{r1}{r2} =  \dfrac{4}{3} \:  \:  \:  \: ....(i)  }   \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

________________________

Now, we know that

 \boxed{ \bold{surface \: area \: of \: sphere = 4\pi {r}^{2} }}

let ‘s1’ and ‘s2’ are surface areas of two spheres

 \implies \bold{s1 =  4 {r1}^{2}  } \\  \\  \implies \bold{s2 = 4 {r2}^{2} }

now we get,

 \bold{\frac{s1}{s2} = \cancel  \frac{4 {r1}^{2} }{4 {r2}^{2} }  } \\  \\  \bold{ \implies \dfrac{s1}{s2}  =  \dfrac{ {r1}^{2} }{ {r2}^{2} } }

Now, put the value of r1/r2 from (i)

 \implies \bold{ \dfrac{s1}{s2}  =  \dfrac{ {4}^{2} }{ {3}^{2} } } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\   \bold{ \implies \dfrac{s1}{s2}  =  \dfrac{16}{9} }   \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \: \\  \\  \implies \bold{s1 :s2 = 16 :9  }

Hence, ratio of the surface area of two spheres is 16:9

Similar questions