Physics, asked by irannanavi91, 8 months ago

if the work done in blowing a soap bubble of volume 'v' is W, then the work is done in blowing a soap bubble of volume '2v'is​

Answers

Answered by BrainlyConqueror0901
13

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Work\:Done=\sqrt{2}\:W}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies Work \: done \: in \: blowing \: bubble \: of \: volume (v) = W \\  \\\red{\underline \bold{To \: Find :}}  \\ \tt:  \implies Work \: done \: in \: blowing \: bubble \: of \: volume(2v) = ?

• According to given question :

 \bold{As \: we \: know \: that} \\   \tt:  \implies Volume \: of \: bubble = v \\  \\  \tt:  \implies  \frac{4}{3} \pi {r_{1} }^{3}  = v -  -  -  -  - (1) \\  \\  \bold{As \: we \: know \: that} \\  \tt:  \implies Volume \: of \: buble  = 2v \\  \\ \tt:  \implies  \frac{4}{3} \pi { r_{2}}^{2}  = 2v \\  \\ \tt:  \implies  \frac{2}{3} \pi { r_{2} }^{2}  = v -  -  -  -  - (2) \\  \\  \text{From \: (1) \: and \: (2)} \\  \\ \tt:  \implies  \frac{4}{3}\pi r_{1}^{3}  =  \frac{2}{3}\pi { r_{2}}^{3}   \\  \\ \tt:  \implies   \bigg( \frac{ r_{2} }{ r_{1} }  \bigg)  =  \sqrt[3]{2}  \\  \\  \bold{As \: we \: know \: that} \\ \tt:  \implies Work \: done \: of \: blowing \: v \: volume \: bubble = surface \: area \times surface \: tension \\  \\ \tt:  \implies W= 4\pi r_{1}^{2}  \times T-  -  -  - - (3)

 \bold{Similarly : }   \\ \tt:  \implies  Work \: done \: in \: blowing \: 2v \: volume \: bubble = surface \: area  \times surface \: tension \\  \\ \tt:  \implies  W_{1} = 4\pi { r_{2}}^{2}  \times T -  -  -  -  - (4)\\   \\  \text{Dividing \: (3) \: and \: (4)} \\  \\ \tt:  \implies  \frac{ W}{ W_{1} }  =  \frac{4\pi { r_{1}}^{2} \times t }{ 4\pi r_{2}   \times t }  \\  \\ \tt:  \implies  \frac{W}{ W_{1}}  =   \bigg(\frac{ r_{1}}{ r_{2} }  \bigg)^{2}  \\  \\ \tt:  \implies  \frac{ W_{1}}{ W}  =  \bigg( \frac{ r_{2}}{ r_{1}} \bigg ) ^{2}  \\  \\ \tt:  \implies  \frac{W_{1}}{W}  =  (\sqrt[3]{2} )^{2}  \\  \\  \green{\tt:  \implies  W_{1} =  \sqrt{2} W} \\  \\   \green{\tt \therefore Work \: done \:in \: blowing  \: volume \: of \: bubble \: 2v \: is \:  \sqrt{2} W}

Similar questions