Math, asked by Nadeemsheikh3085, 1 day ago

If the x+y+z=15,xy+yz+zx=71and xyz=10 find the value of x³+y³+z³

Answers

Answered by shadowsabers03
7

Consider,

\small\text{$\longrightarrow x+y+z=15$}

Squaring both sides,

\small\text{$\longrightarrow(x+y+z)^2=15^2$}

\small\text{$\longrightarrow x^2+y^2+z^2+2(xy+yz+zx)=225$}

Given that \small\text{$xy+yz+zx=71.$} Then,

\small\text{$\longrightarrow x^2+y^2+z^2+2\times71=225$}

\small\text{$\longrightarrow x^2+y^2+z^2+142=225$}

\small\text{$\longrightarrow x^2+y^2+z^2=83$}

Now consider the following formula.

\small\text{$\longrightarrow x^3+y^3+z^3-3xyz=(x+y+z)\left(x^2+y^2+z^2-(xy+yz+zx)\right)$}

Putting the values \small\text{$x+y+z=15,\ xy+yz+zx=71,\ xyz=10$} and \small\text{$x^2+y^2+z^2=83,$}

\small\text{$\longrightarrow x^3+y^3+z^3-3\times10=15\left(83-71\right)$}

\small\text{$\longrightarrow x^3+y^3+z^3-30=180$}

\small\text{$\longrightarrow\underline{\underline{x^3+y^3+z^3=210}}$}

Similar questions