Math, asked by reenabehera1981, 4 months ago

If the y-axis divides the line joined by (2, 4) and (-3, 5),
then the ratio is
(a) 2:3
(c) 3:2
(b) 2:5
(d) 4:5​

Answers

Answered by Anonymous
15

Given :-

  • y-axis divides a line joining points A(2,4) and B(-3,5).

To find :-

  • Ratio in which the line is divided by y-axis.

Solution :-

  • Let us consider the point P(0,y) at which the y-axis intersects the line.

Using section formula

\to\bf\: \: \: {P(0,y) = \bigg( \dfrac{m_1x_2 + m_2x_1}{m_1 + m_2} , \dfrac{m_1y_2 + m_2y_1}{m_1 + m_2} \bigg)}

Now, let the ratio in which the line has been intersected be k : 1.

\: \: \: \therefore\bf\: \: \: {0 = \bigg( \dfrac{m_1x_2 + m_2x_1}{m_1 + m_2} \bigg)}

Here,

  • \sf{x_1 = 2\: , \: x_2 = -3}
  • \sf{m_1 = k\: , \: m_2 = 1}

Putting the values

\tt:\implies\: \: \: \: \: \: \: \: {\bigg( \dfrac{(k \times 2) + (1 \times -3)}{k + 1} \bigg) = 0}

\tt:\implies\: \: \: \: \: \: \: \: {\bigg(\dfrac{2k - 3}{k + 1} \bigg) = 0}

\tt:\implies\: \: \: \: \: \: \: \: {2k - 3 = 0}

\tt:\implies\: \: \: \: \: \: \: \: {2k = 3}

\tt:\implies\: \: \: \: \: \: \: \: {k = \dfrac{3}{2}}

Hence,

  • The required ratio is 3:2. Therefore (c) 3:2 is the correct option.
Similar questions