Math, asked by hotshot1598, 10 months ago

If the y-coordinate of the vertex of the graph of y = ax2 + bx + c, a < 0 is zero, then the zero of the quadratic polynomial is equal to

Answers

Answered by MaheswariS
8

\text{Given polynomial is}\;y=a\,x^2+b\,x+c

\text{First we make the R.H.S of the polynomial equation as a perfect square}

y=a\,x^2+b\,x+c

y=a(x^2+\frac{b}{a}x+\frac{c}{a})

y=a[(x^2+\frac{b}{a}x+\frac{b^2}{4a^2})-\frac{b^2}{4a^2}+\frac{c}{a}]

y=a[(x-\frac{b}{2a})^2-\frac{b^2}{4a^2}+\frac{c}{a}]

y=a(x-\frac{b}{2a})^2+\frac{4ac-b^2}{4a}

y-(\frac{4ac-b^2}{4a})=a(x-\frac{b}{2a})^2

(x-\frac{b}{2a})^2=\frac{1}{a}(y-(\frac{4ac-b^2}{4a}))

\text{This equation is of the form}\;(x-h)^2=4a(y-k)

\implies\,\text{Vertex}\,(h,k)=(\frac{b}{2a},\frac{4ac-b^2}{4a})

\text{Since the y coordinate of the vertex is 0, we have}

\frac{4ac-b^2}{4a}=0

\implies\,b^2-4ac=0

\implies\text{Zeros of the quadratic polynomial $ax2 + bx + c$ are equal}

\text{Then, its zeros are found by using}

x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}

x=\dfrac{-b\pm\sqrt{0}}{2a}

\implies\bf\,x=\dfrac{-b}{2a}

\therefore\textbf{Zeros of the given polynomial is $\dfrac{-b}{2a}$}

Similar questions