Math, asked by soniarai7978, 22 days ago

if the zero of quadratic polynomial is (k^2-14)x^2-2x-12is 1 then find the value of k​

Answers

Answered by SweetestBitter
42

\begin{gathered}\large {\boxed{\sf{\mid{\overline {\underline {\star ANSWER ::}}}\mid}}}\end{gathered}

Given :-

  • p(x) = (k^2 - 14) x^2 - 2x - 12
  • Zero of the polynomial is 1

To Find :-

  • The value of 'k'

Solution :-

If a is the zero of the polynomial, then p(a) = 0.

Then,

Here, a = 1, hence, p(1) = 0

Substituting the value as 1 :

 \sf{p(a) = ( {k}^{2} - 14) {x}^{2} - 2x - 12  }  = 0\\  \sf{ ( {k}^{2} - 14) {1}^{2} - 2(1) - 12  = 0 } \\ \sf{ ( {k}^{2} - 14)  - 2 - 12  = 0 } \\ \sf{ {k}^{2} - 28  = 0 } \\ \sf{k =  \sqrt{28} } \\     \star \: \underline{\boxed{ \sf{k =   \sqrt[2]{7}  }}} \:  \star

@SweetestBitter

Similar questions