Math, asked by vkanika775, 3 months ago

if the zeroes 9f the polynomial x³-3x²+x+1 are a-b,a,a+b find a and b​

Answers

Answered by mathdude500
1

\large\underline{\sf{Solution-}}

We know that

\sf\:If\:\alpha,\beta,\gamma\:are\: zeroes \: of \: f(x)={ax}^{3}+ {bx}^{2}+cx +d\:then

\boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{3}}}}

Or

\boxed{\purple{\tt Sum\ of\ the\ zeroes, \alpha+\beta + \gamma =\frac{-b}{a}}}

And

\boxed{\red{\sf Product\ of\ the\ zeroes= - \dfrac{Constant}{coefficient\ of\ x^{3}}}}

Or

\boxed{\purple{\tt Product\ of\ the\ zeroes, \: \alpha\beta\gamma = -  \: \frac{d}{a}}}

Let's solve the problem now!!

Given that

\sf\:a - b, \: a, \: a + b\:are \: the\: zeroes \: of \:

 \sf \: f(x)={x}^{3} - 3 {x}^{2}+x +1

So,

\boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{3}}}}

\rm :\longmapsto\:a -  \cancel{b} + a + a +  \cancel{b} =  - \dfrac{( - 3)}{1}

\rm :\longmapsto\:3a = 3

\bf :\implies\:a \:  =  \: 1

Now,

We know,

\boxed{\red{\sf Product\ of\ the\ zeroes= - \dfrac{Constant}{coefficient\ of\ x^{3}}}}

\rm :\longmapsto\:(a - b)a(a + b) =  - \dfrac{1}{1}

\rm :\longmapsto\:(1 - b)(1 + b) =  - 1 \:  \:  \:  \{ \: as \: a \:  =  \: 1 \}

\rm :\longmapsto\:1 -  {b}^{2} =  - 1

\rm :\longmapsto\: {b}^{2}  = 2

\bf\implies \:b =  \pm \:  \sqrt{2}

Additional Information :-

\sf\:If\:\alpha,\beta\:are\: zeroes \: of \: f(x)={ax}^{2}+ {bx}+c\:then

\boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

Or

\boxed{\purple{\tt Sum\ of\ the\ zeroes, \:  \alpha  +  \beta =\frac{-b}{a}}}

And

\boxed{\red{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}}}}

Or

\boxed{\purple{\tt Product\ of\ the\ zeroes, \:  \alpha  \beta =\frac{c}{a}}}

Similar questions