if the zeroes od of the quadratic polynomula x2 + (a+1)x+b are 2 and -3 , then find the value of a and b
Answers
Answered by
0
x2-5x+k ,
Here, a=1 , b=-5 and c=b
Now, α+ β = -\frac{b}{a}
a
b
= -\frac{-5}{1}
1
−5
= 5
α x β = \frac{c}{a}
a
c
= \frac{b}{7}
7
b
= k
Now,α - β =1
Squaring both sides, we get,
(α - β)2=12
⇒ α2 + β2 - 2αβ = 1
⇒ (α2 + β2 + 2αβ) - 4αβ = 1
⇒ (α +β)2 -4αβ =1
⇒ (5)2-4b=1
⇒ -4b= 7-25
⇒ -4b= -24
⇒ b=6 So the value of b is 6.
Answered by
0
Step-by-step explanation:
sum of roots of ax^2+bx+c=0 is -b/a
product of roots = c/a
b=a+1, a=1,c=b
sum of roots:
2+(-3) = -(a+1)/1
-1=-(a+1)
1=a+1
=> a=0
product of roots:
b/1 = 2×(-3)
b=-6
a=0, b=-6
Similar questions