Math, asked by sreehari94, 9 months ago

If the zeroes of a quadratic polynomial are 5+√3 and 5-√3 then the quadratic polynomial is​

Answers

Answered by jvkothapalli1
2

Answer:

Step-by-step explanation:

let 5+\sqrt{3\\ be ∝  

      and 5-\sqrt{3\\ be β

 therefore the required quadratic equation is = x²-(∝+β)x + ∝β

                                                   =x²-(5+√3 + 5-√3 )x+( 5-√3)(5+√3)

                                                    = x²-10x +(25-9)

                                                      = x²- 10x +16

therefore the required quadratic equation is x²-10x+16

Answered by Anonymous
1

The quadratic polynomial whose zeroes are,

5 \sqrt{3} ,5 -  \sqrt{3}

 \alpha , \beta  \: is \: f(x) = k[ {x}^{2} - ( \alpha  +  \beta )x +  \alpha  \times  \beta  ]

where k is any non-zero real no.

THE QUADRATIC POLY POLYNOMIAL WHOSE ZEROES ARE

5 \sqrt{3} ,5 -  \sqrt{3}

 f(x) = k[ {x}^{2} - ( \alpha  +  \beta )x +  \alpha  \times  \beta  ]

 f(x) = k[ {x}^{2} - ( 5  \cancel{ +  \sqrt{3}}  + 5  \cancel{ -  \sqrt{3}} )x +    (5 +  \sqrt{3}   ) (5 -  \sqrt{3}  ) ]

 f(x) = k[ {x}^{2} -10x + ( {5)}^{2}  -  ({ \sqrt{3} )}^{2}  ]

 f(x) = k[ {x}^{2} -10x + (25  - 3)]

 f(x) = k[ {x}^{2} -10x + 22]

so, the QUADRATIC polynomial is

 f(x) = k[ {x}^{2} -10x + 22]

Similar questions