Math, asked by dakshsehrawat7812, 18 days ago

If the zeroes of cubic polynomial x3-15x2+74x-120 are the form a,a+b and a+2b for some positive real number, than the value of a and b are​

Answers

Answered by MaheswariS
3

\underline{\textbf{Given:}}

\mathsf{zeroes\;of\;x^3-15x^2+74x-120\;are\;a,\;a+b\;and\;a+2b}

\underline{\textbf{To find:}}

\textsf{The value of a and b}

\underline{\textbf{Solution:}}

\mathsf{Consider,\;\;x^3-15x^2+74x-120}

\mathsf{Sum\;of\;zeroes=\dfrac{-(-15)}{1}}

\mathsf{a+a+b+a+2b=15}

\mathsf{3a+3b=15}

\implies\mathsf{a+b=5}

\implies\mathsf{b=5-a}

\mathsf{Product\;of\;zeroes=120}

\implies\mathsf{a(a+b)(a+2b)=120}

\implies\mathsf{a(5)(10-a)=120}

\implies\mathsf{a(10-a)=24}

\implies\mathsf{10a-a^2=24}

\implies\mathsf{a^2-10a+24=0}

\implies\mathsf{(a-4)(a-6)=0}

\implies\mathsf{a=4,6}

\mathsf{when\;a=4,}

\mathsf{b=5-4}

\implies\mathsf{b=1}

\mathsf{when\;a=6,}

\mathsf{b=5-6}

\implies\mathsf{b=-1}

\textsf{But a and b are positive real numbers}

\therefore\boxed{\mathsf{a=4\;\;and\;\;b=1}}

\underline{\textbf{Find more:}}

Form a cubic polynomial whose zeroes are 2 , 1 , 1.

https://brainly.in/question/16999897

Answered by hukam0685
14

Answer:

Step-by-step explanation:

Given:

 {x}^{3} - 15 {x}^{2} + 74x - 120 \\

Zeroes of cubic polynomial is in the form a,a+b and a+2b .

To find: Find the value of a and b.

Solution:We know that zeroes of cubic polynomial and coefficients of cubic polynomial have some relation.If

 \alpha ,\beta ,\gamma

are the zeroes of cubic polynomial

 a{x}^{3} + b {x}^{2} + cx + d \\

then

 \alpha + \beta + \gamma = \frac{ - b}{a} \\ \\ \alpha \beta + \beta \gamma + \alpha \gamma = \frac{c}{a} \\ \\ \alpha \beta \gamma = \frac{ - d}{a} \\

So, here zeros of polynomial are a,a+b and a+2bapply first relation

a + a + b + a + 2b = 15 \\ \\ or \\ \\ 3a + 3b = 15 \\ \\ or \\ \\ \bold{a + b = 5}...eq1

From last relation,put value from eq1

a(a + b)(a + 2b) = 120 \\ \\ a(5)(5 + 5 - a ) = 120 \\ \\ 5a (10 - a) = 120 \\ \\ a (10 - a) = 24 \\ \\ 10a - {a}^{2} - 24 = 0 \\ \\ or \\ \\ {a}^{2} - 10a + 24 = 0 \\ \\ {a}^{2} - 6a - 4a + 24 = 0 \\ \\ a(a - 6) - 4(a - 6) = 0 \\ \\ (a - 6)(a - 4) = 0 \\ \\ either \\ \\ a = 6 \\ \\ or \\ \\ a = 4 \\ \\

If

a = 6 \\ \\ then \\ \\ 6 + b = 5 \\ \\ b = - 1 \\ \\

and if

a = 4 \\ \\ 4 + b = 5 \\ \\ b = 1 \\ \\

There are two possibilities of values of a and b

a = 6 \: b = - 1 \\ \\ a = 4 \: b = 1 \\ \\

but according to the question values should be positive.

Final answer:a=4 and b= 1

Hope it helps you.

To learn more on brainly:

1)The absolute difference betweenthe integral values of P suchthat(x-p)(x-12)+2 = 0 has integral roots is https://brainly.in/question/40770211

Similar questions