Math, asked by rohitjaat579, 17 hours ago

if the zeroes of polynomial ax^2+x+a are equal then value of a is
(a)+1/2 (b)-1 (c)+1/3 (d) none of these​

Answers

Answered by mathdude500
5

 \green{\large\underline{\sf{Solution-}}}

Given quadratic polynomial is

\rm :\longmapsto\:f(x) =  {ax}^{2} + x + a \: have \: equal \: zeroes

Let assume that

\rm :\longmapsto\:f(x) =  {ax}^{2} + x + a \: have\: zeroes \:  \alpha , \alpha

We know

\boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

So,

\rm \implies\: \alpha   + \alpha  =  -  \: \dfrac{1}{a}

\rm \implies\: 2\alpha  =  -  \: \dfrac{1}{a}

\bf \implies\: \alpha  =  -  \: \dfrac{1}{2a}

Also, we know that

\boxed{\red{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}}}}

\rm \implies\: \alpha  \times  \alpha  = \dfrac{a}{a}

\rm \implies\:  { \alpha }^{2}   = \dfrac{a}{a}

\rm \implies\:  {\bigg[\dfrac{1}{2a} \bigg]}^{2}   = 1

\rm :\longmapsto\:\dfrac{1}{2a} =  \:  \pm \: 1

\bf\implies \:a \:  =  \:  \pm \: \dfrac{1}{2}

\bf\implies \:a \:  =   \: \dfrac{1}{2}  \:  \: or \:  \:  -  \:  \dfrac{1}{2}

So,

  • Option (d) is correct

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\red{\rm :\longmapsto\: \alpha , \beta , \gamma  \: are \: zeroes \: of \: a {x}^{3}  + b {x}^{2} +  cx + d, \: then}

 \green{\boxed{ \sf{ \:  \alpha  +  \beta  +  \gamma  =  - \dfrac{b}{a}}}}

 \green{\boxed{ \sf{ \:  \alpha  \beta  +  \beta \gamma   +  \gamma  \alpha  = \dfrac{c}{a}}}}

 \green{\boxed{ \sf{ \:  \alpha  \beta  \gamma  =  - \dfrac{d}{a}}}}

Similar questions