If the zeroes of polynomial x³-3x²+x+1 are (a-b),a, (a+b), find a and b.
Answers
Answer:
→ a = 1 and b = ±√2 .
Step-by-step explanation:
Given polynomial is f(x) = x³ - 3x² + x + 1 .
Here a = 1 , b = -3 , c = 1 , d = 1 .
Let α = ( a - b ) , β = a and γ = ( a + b ) .
As we know,
→ α + β + γ = -b/a .
⇒ ( a - b ) + a + ( a - b ) = -(-3)/1 .
⇒ 3a = 3 .
⇒ a = 3/3 .
∴ a = 1 .
And,
→ αβ + βγ + γα = c/a .
⇒ a( a - b ) + a( a + b ) + ( a + b )( a - b ) = 1/1 .
⇒ a² - ab + a² + ab + a² - b² = 1 .
⇒ 3a² - b² = 1 .
⇒ ( 3 × 1² ) - b² = 1 . { ∵ a = 1 }
⇒ 3 - b² = 1 .
⇒ b² = 3 - 1 .
⇒ b² = 2 .
∴ b = ±√2 .
Hence, it is solved .
ANSWER
Given:-
→ p(x)= x³ -3x² +x+1
and the zeroes are
→ (a-b), a ,(a+b)
Here ,
→ a = 1
→ b = -3
→ c = 1
→ d = 1
→ a - b + a + a + b = -(-3)/1
→ 3a = 3
→ a = 3/3
→ a = 1.
Now,
→ (a - b) (a) (a+b) = -d/a
→ (a-b) (a+b) (a)= -1/1
→ a² - b² × a = -1
put the value of a in it
→ 1² - b² ×1 = -1
→ 1 - b² = -1
→ -b² = -1-1
→ -b² = -2
→ b = ±√2