Math, asked by dhruvgupta58, 4 months ago

If the zeroes of polynomial x³-ax²+bx-c are in AP then show that 2a³-9ab+27c=0​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:zeroes \: of \:  {x}^{3} -  {ax}^{2} + bx - c \: are \: in \: AP

Let assume that,

\rm :\longmapsto\:f(x) \:  =  \:  {x}^{3} -  {ax}^{2} + bx - c \:

and

Let further assume that,

\rm :\longmapsto\:zeroes \: of \: f(x) \: be \: y - z, \: y, \: y + z

as they are in AP.

Now,

we further know that,

\boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{3}}}}

\rm :\longmapsto\:y - z + y + y + z =  -  \: \dfrac{( - a)}{1}

\rm :\longmapsto\:3y = a

\bf\implies \:y = \dfrac{a}{3}

Now, since y is zero of f(x),

We have,

\rm :\longmapsto\:f(x) \:  =  \:  {x}^{3} -  {ax}^{2} + bx - c \:

So,

\rm :\longmapsto\:f(y) = 0

\rm :\longmapsto\:f\bigg(\dfrac{a}{3} \bigg)  = 0

\rm :\longmapsto\:\bigg(\dfrac{a}{3} \bigg)^{3} - a\bigg(\dfrac{a}{3} \bigg) ^{2}  + b\bigg(\dfrac{a}{3} \bigg) - c = 0

\rm :\longmapsto\:\dfrac{ {a}^{3} }{27}  - \dfrac{ {a}^{3} }{9}  + \dfrac{ab}{3}  - c = 0

\rm :\longmapsto\:\dfrac{ {a}^{3}  - 3 {a}^{3}  + 9ab - 27c}{27}   = 0

\rm :\longmapsto\:\dfrac{ - 2 {a}^{3}  + 9ab - 27c}{27}   = 0

\rm :\longmapsto\: - 2 {a}^{3}  + 9ab - 27c = 0

\rm :\longmapsto\: 2 {a}^{3}  - 9ab  + 27c = 0

Hence, Proved

Additional Information :-

\rm :\longmapsto\: \alpha,\beta, \gamma \: are \: zeroes \: of \: a {x}^{3} + b {x}^{2}  + cx + d, \: then

\boxed{ \sf{ \:  \alpha  +  \beta  +  \gamma  =  -  \: \dfrac{b}{a} }}

\boxed{ \sf{ \:  \alpha  \beta  +  \beta \gamma   +  \gamma  \alpha  =   \: \dfrac{c}{a} }}

\boxed{ \sf{ \:  \alpha \beta  \gamma  =  -  \: \dfrac{d}{a} }}

Similar questions